Биологические функции белков, их состав, виды, денатурация полипептида до первичной структуры

Структура белка – основные виды с описанием и примерами, функции

Структура белка необычайно важна для соединений, так как все функции они выполняют, принимая определённую пространственную конфигурацию.

Белки – это природные полимеры, молекулы которых состоят из остатков аминокислот, соединенных амидными (пептидными) связями.

Мономерами для образования макромолекулы служат α-аминокислоты. Это соединения, содержащие аминогруппу у первого атома углерода, не считая углерод карбоксильной группы.

Таких аминокислот известно 20. Из этого количества создаётся всё многообразие белков. Некоторые аминокислоты могут образовываться в организме, их называют заменимыми. Те, которые поступают только с пищей – незаменимые. В зависимости от состава, белки делят на полноценные, содержащие незаменимые аминокислоты, и неполноценные, не содержащие незаменимые аминокислоты.

Состав, строение и функции белков очень сложные, изучает эти вопросы биология. Рассматриваются природные полимеры и в курсе химии. Состав их можно выразить формулой:

В природные полимеры входят химические элементы: углерод, кислород, водород, азот, сера. В состав некоторых соединений включены фосфор, селен железо, медь и прочие элементы.

Первичная структура белка

Последовательно соединенные друг с другом аминокислотные остатки в цепь образуют первичную структуру. Цепь образована пептидной химической связью. Этот уровень организации самый важный. Случайная замена одной аминокислоты вызывает тяжелое генетическое заболевание.

Структуры белка

Белковые молекулы образуются в процессе биосинтеза на рибосомах. Здесь реализуется наследственная информация. Последовательность аминокислотных остатков определяется последовательностью нуклеотидов в и-РНК. Зависимость триплетов и аминокислот записана в таблице генетического кода.

Первичная структура белка

Если первичный уровень организации белка задаётся правильно, остальные структуры макромолекула принимает самопроизвольно.

Вторичная структура белка

Свёрнутая в спираль одна или 2 полипептидные цепи образуют вторичную структуру. Её поддерживают водородные связи.

Вторичная структура белка

Большинство белковых молекул имеют вторичный уровень.

Третичная структура белка

Упаковка вторичной структуры в клубок образует третичный уровень организации.

Третичная структура белков

Поддерживают данную структуру дисульфидные, солевые, сложноэфирные мостики, силы электростатического взаимодействия.

Четвертичная структура белка

Некоторые белковые единицы формируют сложные агрегаты в пространстве. Несколько упакованных в клубок белков, ориентированных относительно друг друга, создают четвертичную структуру.

Четвертичная структура белка

Удерживаются такие агрегаты водородными связями, электростатическими и прочими взаимодействиями.

Денатурация и ренатурация белка

Природные соединения проявляют разные свойства. Одно из важнейших свойств – денатурация белка. Это разрушение пространственной организации белковых молекул. Последовательность соединения аминокислот, а значит и химический состав, не изменяется.

Денатурация белка

Пространственная конфигурация может разрушаться в результате действия разных факторов:

солей тяжёлых металлов;

механических и иных факторов.

Если первичный уровень организации белка не нарушен, может идти обратная реакция – ренатурация. Это восстановление пространственного строения молекулы. Не все природные полимеры способны к восстановлению пространственной организации.

Иногда денатурация протекает необратимо, хотя первичная структура не разрушается. Функции белки способны выполнять, находясь в определенной пространственной конфигурации.

Протеины – простые белки

К простым белкам относят высокомолекулярные соединения, состоящие только из остатков аминокислот. В них содержатся незаменимые и заменимые аминокислоты.

Простые белки протеины

Протеины применяются в спортивной среде для восполнения белковой массы в организме. Используют протеиновый порошок для приготовления коктейля, в качестве добавки к пище.

Протеиновый порошок получают в результате переработки продуктов животного происхождения: молока, мяса, яиц, рыбы. Организм будет получать протеины, если просто употреблять в пищу указанные продукты. Усвоение их будет идти медленнее.

Протеиды – сложные белки

Сложными называют белки, содержащие небелковые по природе вещества. Так называемые простетические группы.

Структура гемоглобина

В соответствии с химическим составом и наличием групп их классифицируют:

гликопротеиды и другие.

В состав протеидов входят элементы: магний, железо, медь и другие. Примером протеидов являются гемоглобин и миоглобин. Они выполняют важнейшие функции, принимают участие в обменных процессах.

6. Белки: строение, свойства, функции

Среди органических веществ клетки самыми разнообразными по свойствам и выполняемым функциям являются белки , или протеины . В белках, в отличии от углеводов и липидов, кроме углерода, кислорода и водорода содержится азот, а также могут присутствовать атомы серы, фосфора и железа.

Белки — это биополимеры, мономерами в которых служат аминокислоты . В образовании всего разнообразия белков участвует (20) α -аминокислот. Молекулы аминокислот имеют две функциональные группы: карбоксильную (кислотную) и аминогруппу (основную).

AminoAcidball_rus.svg.png

Аминогруппа и карбоксильная группа способны взаимодействовать между собой с отщеплением воды и образованием пептидной связи CO − NH . Пептидными связями молекулы аминокислот соединяются друг с другом в длинные цепи. Число остатков аминокислот в цепи может составлять несколько сотен и даже тысяч. Такие большие молекулы называют макромолекулами.

Порядок соединения аминокислот в макромолекуле белка называют первичной структурой. Для каждого типа белка эта структура уникальна. Она определяет структуры высших уровней, свойства белка и его функции.

Полипептидная цепь сворачивается в спираль за счёт образования водородных связей между группировками атомов − NH и − CO , расположенными на разных участках макромолекулы. Эту спираль называют вторичной структурой белка.

Читайте также:
Растения Африки: где находятся необычные цветы тропических саванн, редкие виды

Третичная структура белка возникает при взаимодействии радикалов аминокислот, а также за счёт дисульфидных мостиков, водородных и ионных связей. Молекула белка принимает форму глобулы (шарика).

У некоторых белков формируется четвертичная структура. Она представляет собой комплекс нескольких макромолекул, имеющих третичную структуру. Четвертичную структуру удерживают непрочные ионные и водородные связи, а также гидрофобные взаимодействия.

1 (33).png

Белки могут соединяться с углеводами, жирами и нуклеиновыми кислотами с образованием комплексных соединений: гликопротеинов, липопротеинов, нуклеопротеинов.

Под действием внешних факторов: облучения, нагревания, некоторых химических веществ и др. — происходит нарушение пространственной структуры белковых молекул. Этот процесс называется денатурацией.

Сначала происходит разрушение четвертичной структуры, потом третичной и вторичной. Первичная структура при денатурации сохраняется, но белок утрачивает свои свойства и функции.

3 (30).png

Разрушение первичной структуры необратимо. Оно происходит при гидролизе белка — макромолекулы распадаются на отдельные аминокислоты. Такой процесс идёт в органах пищеварения животных и в лизосомах клеток под действием гидролитических ферментов.

1. Важнейшей функцией белков является каталитическая, или ферментативная. Белки-ферменты участвуют во всех биохимических реакциях, протекающих в клетке, и повышают скорость этих реакций во много раз. Для каждой реакции существует особый фермент.

2. Белки выполняют структурную (строительную) функцию. Они входят в состав плазматических мембран, образуют соединительные ткани (эластин и коллаген), волосы и ногти (кератин).

Рисунок1.png

3. Сигнальную функцию также осуществляют белки, встроенные в мембрану. Под действием внешних факторов эти белки изменяют третичную структуру, что отражается на функционировании клетки.

4. Транспортная функция белков проявляется в переносе ионов через клеточные мембраны, транспорте гемоглобином крови кислорода и углекислого газа, альбуминами плазмы — жирных кислот и т. д.

5. Двигательную функцию обеспечивают белки актин и миозин, способные сокращаться и растягиваться. Они приводят в движение реснички и жгутики одноклеточных организмов, сокращают мышцы у животных.

2 (29).png

6. Защитная функция обеспечивается антителами иммунной системы организма, белками системы свёртывании крови (фибриногеном, протромбином и др.).

7. Регуляторную функцию выполняют белки-гормоны (инсулин, тиреотропин, соматотропин, глюкагон и др.).

8. Энергетическую функцию белки выполняют после израсходования запасов углеводов и жиров. При полном расщеплении (1) г белка до конечных продуктов выделяется (17,6) кДж энергии.

КЛАССИФИКАЦИЯ БЕЛКОВ. БИОЛОГИЧЕСКИЕ ФУНКЦИИ БЕЛКОВ

Сложность строения белковых молекул и чрезвычайное разнообразие их функций крайне затрудняют создание единой четкой их классификации на какой-либо одной основе. Белки можно классифицировать по их составу (простые, сложные), структуре (фибриллярные, глобулярные, промежуточные), функциям. Рассмотрим подробнее структурную классификацию.

Фибриллярные белки сильно вытянуты (наиболее важна вторичная структура) и выполняют структурные функции.

Глобулярные белки, которые в грубом приближении могут быть представлены в виде сфер (наиболее важной является третичная структура), принимают участие в таких специфических процессах, как катализ, транспорт, регуляция.

Кроме перечисленных выше типов белков, в организме имеются небольшие или бедные углеводородными группами полипептиды, которые могут сами по себе не иметь фиксированной структуры, но приобретать ее при взаимодействии с другими макромолекулами. Следует отметить, что данная классификация не может претендовать на полноту, так как существуют белки, которые не относятся ни к одному из этих классов. Например, миозин, который по своей структуре содержит признаки и фибриллярного и глобулярного белка.

Белок с исходной, природной укладкой цепи, т. е. имеющий трехмерную конфигурацию, называется нативным, белок с развернутой, беспорядочной укладкой цепи – денатурированньш. Превращение нативного белка в денатурированный, т. е. утрата белком его трехмерной конфигурации, называется денатурацией (рис. 3.15). Вызывать денатурацию могут разнообразные факторы. В частности, плотная укладка цепи белка обычно нарушается при нагревании. Тепловая денатурация – общее свойство белков. После денатурации биологически активный белок может самопроизвольно свернуться в исходную конформацию с восстановлением своей активности. Процесс сворачивания денатурированного белка называется ренатурацией.

Денатурация белковой молекулы

Рис. 3.15. Денатурация белковой молекулы:

а – исходное состояние; б – начинающееся обратимое нарушение молекулярной структуры; в – необратимое развертывание полипептидной цепи

При длительном воздействии денатурирующего агента (температуры, химического вещества, среды с различным pH) денатурация становится необратимой (на рис. 3.15 этот процесс обозначен стрелкой между состояниями белковой молекулы б и в). Большинство белков денатурирует при нагревании их растворов выше 50-60 °С.

Денатурированный белок теряет способность растворяться в воде. Наиболее характерным признаком денатурации является резкое снижение или полная потеря белком его биологической активности (каталитической, антигенной или гормональной). Тот факт, что денатурированный белок полностью теряет свои биологические свойства, подтверждает тесную связь между структурой белковой молекулы и функцией, которую она выполняет в организме.

Способность белковой молекулы спонтанно ренатурироваться при снятии внешнего агрессивного воздействия говорит о том, что аминокислотная последовательность сама определяет пространственную структуру белка без участия какого-либо внешнего регулирующего центра.

Читайте также:
Информационная деятельность человека: что это, исторический аспект; привести примеры

В настоящее время денатурация и ренатурация глобулярных белков in vitro интенсивно исследуются, так как эти процессы связаны с проблемой самоорганизации белка, т. е. с вопросом о том, как белковая цепь «находит» свою уникальную структуру среди гигантского числа возможных альтернатив.

Фибриллярные белки составляют основу не растворимых в воде и прочных материалов, таких как рога, копыта, ногти, шерсть, волосы, перья, кожа, сухожилия, межклеточное вещество костной ткани. Волос – длинное достаточно прочное волокно, основой которого является белок – а-кератин. В основе сухожилий другой белок – коллаген. Эластичность и упругость стенкам артерий или легочных альвеол придает эластин. Общей особенностью этих белков является участие в формировании их пространственной структуры ковалентных непептидных связей.

Кератины волос и шерсти образуют промежуточные фила- менты, состоящие из длинных полипептидных цепей с крупными доменами, образованными а-спиралями и содержащими повторяющиеся последовательности из семи аминокислотных остатков (гептапептиды). Две направленные одинаково цепи кератина образуют суперспираль, в которой остатки неполярных аминокислот обращены внутрь и тем самым защищены от воздействия воды. Такая структура дополнительно стабилизируется многочисленными дисульфидными связями, образованными остатками цистеина соседних цепей. Суперспиральные димеры, в свою очередь, объединяются с образованием тетрамеров, подобных четырехжильному канату.

Коллаген образуется вне клеток из секретируемого ими белка – проколлагена, который превращается в коллаген в результате взаимодействия соответствующих ферментов. Молекула проколлагена представляет собой тройную суперспираль, образованную тремя скрученными вместе специализированными полипептидами. Далее при отщеплении концевых полипептидов образуется тропоколлаген, который упаковывается в коллагеновые волокна. Каждый из трех полипептидов в тропоколлагене находится в виде левосторонней спирали (в отличие от обычных правосторонних а-спиралей у белков). Примерно треть аминокислотных остатков в тропоколлагене представлена пролином, а каждый третий остаток – глицином.

В ходе образования коллагена многие остатки пролина и лизина в присутствии аскорбиновой кислоты гидроксилируются, превращаясь соответственно в гидроксипролин и гидроксилизин:

Эти остатки оказываются включенными в белок не в ходе его матричного синтеза, а в результате химического посттрансляционного превращения входящих в его состав аминокислот. Гидро- ксилирование пролина требует в качестве кофактора (небелкового компонента, необходимого для эффективной работы) аскорбиновую кислоту (витамин С), которая нужна для поддержания в восстановленном состоянии иона Fe 2+ в активном центре фермента прол ил-гидроксил азы. При недостатке витамина С нарушается образование соединительных тканей, что вызывает тяжелое заболевание – цингу.

Три спирально навитые друг на друга молекулы тропоколлаге- на ковалентно связаны между собой, образуя прочную структуру. Такая ассоциация невозможна в обычной белковой спирали, так как этому препятствуют объемные боковые цепи. В коллагене спирали более вытянуты (на один виток приходится 3 остатка, вместо 3,6), так как каждый третий аминокислотный остаток – глицин, поэтому спирали в этих точках максимально приближены друг к другу. Дополнительная стабилизация структуры осуществляется водородными связями гидроксилированных остатков лизина и пролина.

Молекулы тропоколлагена содержат около 1000 аминокислотных остатков. Они собираются в коллагеновые фибриллы, стыкуясь «голова к хвосту». Пустоты в этой структуре при необходимости могут служить местом первоначального отложения кристаллов гидроксиапатита Са5(0Н)(Р04)з, играющего важную роль в минерализации костей.

Коллаген сухожилий подвергается ферментативной модификации – в концевых частях тропоколлагеновых цепей ковалентно сшиваются остатки лизина. Таким образом, сухожилия представляют собой пучки параллельно ориентированных фибрилл. В отличие от сухожилий в коже коллагеновые фибриллы образуют подобие неупорядоченной двумерной сетки.

Эластин по своему строению отличается от коллагена и а- кератина. Он содержит обычные а-спирали, образующие поперечно-сшитую сеть, которая своей необычайно высокой эластичностью обязана уникальному способу связывания боковых цепей лизина:

четыре сближенных лизиновых остатка

формируют так называемую десмозиновую структуру, объединяющую в один узел четыре участка пептидных цепей (рис. 3.16).

Химическая структура десмозина

Рис. 3.16. Химическая структура десмозина

Глобулярные белки. Большинство белковых молекул в организме имеет глобулярное строение. Пептидная связь в глобулярных белках в естественном состоянии свернута в компактные структуры – глобулы, которые в первом грубом приближении могут быть представлены в виде шара или не слишком вытянутого эллипсоида, в отличие от фибриллярных белков, где длинные полипептидные цепи вытянуты вдоль одной оси.

Глобулы устойчивы в водных системах вследствие того, что полярные группы основной и боковых цепей сосредоточены на поверхности, находясь в контакте с водой, а неполярные обращены в глубь молекулы и защищены от этого контакта. На поверхности белковой глобулы иногда образуются ионные связи – солевые мостики.

Оказавшиеся внутри глобулы >N-H и >С=0-группы основной цепи с образовавшимися водородными связями формируют в результате а-спирали и (3-слои. Дестабилизирующим фактором пространственной упаковки является наличие в глубине глобулы каких-то групп, потенциально способных образовывать ионные и водородные связи, но реально лишенных партнеров.

Читайте также:
Куда впадает Дон: где находится река, уровень ее вод, падение и уклон водного потока

При физиологических условиях состояние белка, имеющего нативную трехмерную структуру, термодинамически стабильно, т. е. соответствует минимуму свободной энергии. Информация, необходимая для сворачивания белка в нативную конформацию, заложена в его аминокислотной последовательности. Поэтому в принципе теоретически можно предсказать трехмерную структуру любого белка исходя из его аминокислотной последовательности. Однако предсказание третичной структуры остается нерешенной проблемой молекулярной биологии. Сворачивание молекулы белка из развернутого состояния должно осуществляться единственным путем. Если предположить, что белковая молекула состоит из 50 остатков, каждый из которых может принимать 10 разных конформаций, то общее число возможных конформаций составит 10 50 , и если характерное время молекулярных перестроек составляет 10“ 13 с, то для того, чтобы перепробовать все конформации, потребуется 10 37 с (~ Ю 30 лет). Следовательно, существует направленный путь сворачивания белка.

Стабильность свернутой молекулы белка в водном окружении крайне низка. Основной движущей силой сворачивания является энтропийный гидрофобный эффект, вследствие которого неполярные группы стремятся выйти из водного окружения и оказаться внутри глобулы. Существует и обратный эффект, препятствующий сворачиванию и обусловленный тем, что для свернутой молекулы белка число разрешенных конформаций основной и боковых цепей меньше, чем у развернутой.

Гемоглобин (НЪ) – белок, переносящий кислород от легких к тканям. НЬ локализован в красных кровяных клетках – эритроцитах.

Как уже отмечалось (см. рис. 3.14), гемоглобин состоит из четырех полипептидных цепей, каждая из которых содержит гем (рис. 3.17). Функциональная взаимосвязь этих цепей такова, что присоединение О2 к одному из атомов железа повышает сродство к кислороду у трех других.

Гемоглобины – это целый класс белков, представители которого различаются одним-двумя аминокислотными остатками или их последовательностью. У взрослого человека гемоглобин типа НЬА. Кроме НЬА, существует эмбриональный гемоглобин HbF, исчезающий после рождения. Молекулярная масса обоих гемоглобинов приблизительно одинакова (64 500), они отличаются только последовательностью аминокислотных остатков. Наряду с обычно имеющимися гемоглобинами в организме человека встречаются аномальные HbS, HbG, НЬС, НЬН и т. д. Общность всех гемоглобинов — в способе укладки их полипептидных цепей вокруг большого плоского кольца гема, идентичного для всех, в центре которого находится атом железа (порфириновое кольцо).

Г ем состоит из атомов углерода, азота и водорода, образующих плоское кольцо, называемое порфирином (рис. 3.17). В центре кольца находится атом Fe, связанный с атомами кольца четырьмя координационными связями (из шести возможных). К гему примыкают два остатка гистидина (His). Имидозольная группа гистидина (F-8) связана координационной связью с атомом Fe через пятую координационную связь. Шестая связь служит для соединения с молекулой О2.

Химическая структура гема

Рис. 3.17. Химическая структура гема

Миоглобин – мышечный белок, переносящий кислород в мышечных клетках. Он состоит из одной полипептидной цепи, содержит только а-спирали, соединенные петлями, и имеет один гем. Аминокислотная последовательность миоглобина отличается от последовательностей a-цепей гемоглобина. Однако третичная структура a-цепей гемоглобина и миоглобина идентична. Общий способ свертывания а-спиралей глобулярных белков называется глобиновым типом сворачивания.

Лекция № 3. Строение и функции белков. Ферменты

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Читайте также:
Африка рельеф: происхождение и географическое строение, эволюция

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Строение аминокислот

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

первичная структура белка

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

вторичная структура белка

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

прион

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Купить проверочные работы
по биологии

Биология. Растения. Бактерии. Грибы. Лишайники. Работаем по новым стандартам. Проверочные работы Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы Биология. Общие закономерности. Работаем по новым стандартам. Проверочные работы

Аминокислотный состав, структура белковой молекулы определяют его свойства. Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией. Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой, в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией. Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой.

Читайте также:
Какое количество хромосом содержится в кариотипе у картошки

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО2 при фотосинтезе.

Ферменты

Ферменты, или энзимы, — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом.

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор. У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты).

фермент и субстрат

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия.

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

Читайте также:
Сколько всего городов в мире: количество городов с населением более 3 млн человек

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

аллостерические фрагменты

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами, если тормозят — ингибиторами.

Sale

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С–С, С–N, С–О, С–S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С–С, С–N, С–О, С–S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

Перейти к лекции №2 «Строение и функции углеводов и липидов»

Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»

Строение и функции белков: особенности, важные функции, роль ферментов в клетке

Белки являются сложными органическими соединениями или биополимерами, содержащих в составе водород, углерод, азот и кислород, а в редких случаях — серу.

Мономерами белков являются аминокислоты.

В жизни любого организма белки играет важную роль (и в клетке тоже). При неисчерпаемом разнообразии белков, им характерна определенная специфичность.

Белки и нуклеиновые кислоты — материальная база всего существующего богатства организмов окружающей среды. От сухой массы клетки их доля может составлять от 50 до 80%.

Каково строение молекулы белка?

Молекулы белков — это длинные цепи, которые состоят из 50-1500 остатков аминокислот. Между собой они соединены прочной ковалентно-углеродной (пептидной) связью. Как результат — образование первичной структуры белка или полипептидной цепи.

Молекула белка представляет собой полипептид с молекулярной массой от 5 до 150 тысяч (в некоторых случаях даже больше).

В составе простых белков присутствуют только аминокислоты. Сложные белки помимо аминокислот могут содержать нуклеиновые кислоты (нуклеопротеиды), липиды (липопротеиды), окрашенные химические соединения (хромопротеиды), углеводы (гликопротеиды) и др.

Химические, функциональные и морфологические свойства клетки определяются специфическими белками, которые в ней присутствуют.

Набор аминокислот, их количество и последовательность расположения в полипептидной цепи — формирующие составляющие специфичность белка.

Если в составе белковой молекулы заменить одну аминокислоту, или поменять последовательность расположения аминокислот, то в результате может произойти изменение функций белка в клетке. Все это и является причиной большого разнообразия строения белка (белковой молекулы первичной структуры).

Становится понятным, почему живой организм для выполнения своих функций использует особенные виды белков. В этом отношении его возможности являются неограниченными.

Свойства белков определяются также и пространственным расположением полипептидных цепей. Полипептидные цепи в живой клетке являются скрученными или согнутыми, для них характерная вторичная или третичная структура.

Спирально закрученная белковая цепочка — это вторичная структура. Удержание витков спирали осуществляется за счет водородных связей, которые образуются между CO- и NH-группами, расположенными на соседних витках.

Дальнейшее закручивание спирали приводит к специфической конфигурации каждого белка, то есть — к третичной структуре. Ее образование происходит за счет связей между белковыми радикалами аминокислотных остатков. Это связи:

  • ковалентная дисульфидная (S- S-связь) между остатками цистеина;
  • водородная;
  • ионная;
  • гидрофобные взаимодействия.

Гидрофобные взаимодействия в количественном соотношении можно считать наиболее важными. Они появляются в результате того, что неполярные боковые цепи аминокислот пытаются объединиться друг с другом без смешения с водной средой. При этом происходит свертывание белка таким образом, что его гидрофобные боковые цепи прячутся внутрь молекулы: так они получают защиту от воды. Наружу выставлены, при этом, боковые гидрофильные цепи.

Читайте также:
Животные Урала, птицы и растения, Красная книга, разнообразие природы

Есть определенные специфичные для любого белка моменты:

  • количество молекул аминокислот с гидрофобными радикалами;
  • количество молекул цистеина;
  • характер их взаиморасположения в полипептидной цепи.

Сохранение определенной формы молекулы обеспечивает взаимное расположение групп атомов, необходимое для проявления активности белка в качестве катализатора, его гормональные функции и др. По этой причине стойкость макромолекул не является случайным свойством, а важный и необходимый способ стабилизации организма.

Проявление биологической активности белка характерно только при наличии третичной структуры. Замена даже одной аминокислоты в полипептидной цепи приводит к изменениям в конфигурации белка, а также к снижению его биологической активности и даже исчезновению.

В некоторых случаях возможно объединение в единый комплекс двух, трех и более белковых молекул с третичной структурой. В итоге получаем четвертичную структуру белка.

Пример четвертичной структуры белка — гемоглобин. Он состоит из четырех субъединиц и небелковой части (гема). Только в такой форме он может выполнять свои функции.

Белковые субъединицы в четвертичной структуре не имеют химической связи. Но сама структура при этом довольно крепкая за счет действия слабых межмолекулярных сил.

Третичная и четвертичная структуры могут меняться в результате разрыва водородных и ионных связей. Это происходит под влиянием различных физических и химических факторов:

  • обработки щелочами, кислотами, ацетоном, спиртом;
  • высокой температуры;
  • давления и др.

Денатурация — это нарушение естественной или нативной белковой структуры.

Денатурация приводит к снижению растворимости белка, изменению формы и размеров молекул, утрате ферментативной активности и т.д. При этом, процесс денатурации является обратимым: при возвращении нормальных условий происходит непроизвольное обновление естественной (природной) структуры белка. Этот процесс получил название ренатурации.

Первичная белковая структура определяет особенности строения белка и функционирование белковой макромолекулы. От строения перейдем к функциям белков.

Функции белков в клетке

Выделяют как минимум 3 основных функции белка в клетке:

  1. Строительная функция белков или пластическая. Одна из важнейших функций, так как белки являются составными компонентами клеточных мембран и органелл. В основном из белка состоят стенки кровеносных сосудов, сухожилия, хрящи высших животных.
  2. Двигательная. Ее обеспечивают особенные сократительные белки, за счет которых приходят в движение жгутики и реснички, перемещение хромосом в ходе деления клеток, сокращение мускулатуры, движение органов растений, а также изменения положений разнообразных структур организма в пространстве.
  3. Транспортная. Эта функция обеспечивается способностью белков к связыванию и переносу с течением крови химических соединений.

Теперь пройдемся по другим функциям белков кратко.

Белок крови гемоглобин осуществляет перенос кислорода из легких в клетки других органов и тканей. В мышцах такую функцию выполняет миоглобин.

Белки сыворотки крови осуществляют перенос липидов и жирных кислот, а также различных биологически активных веществ.

Входящие в состав плазматической мембраны молекулы белков участвуют в транспорте веществ в клетку и из нее.

Говорить о белках и их функциях невозможно, не отметив защитную функцию белков. Клетка способна вырабатывать особые белки — иммуноглобулины. Это происходит, когда в нее проникают различные чужеродные вещества вроде антигенов-белков или высокомолекулярных полисахаридов бактерий, вирусов. Иммуноглобулины или антитела устраняют чужеродные вещества и обеспечивают иммунологическую защиту организма.

Функционирование иммунной системы организма осуществляется благодаря распознаванию антигенов антигенным детерминантом (характерным участком их молекул). Таким образом чужеродные вещества связываются и обеззараживаются.

Внешняя защитная функция может выполняться также белками, которые являются токсичными для других организмов. К примеру, белок змей.

Стоит выделить и сигнальную функцию белков. Молекулы белков, способные к изменению третичной структуры в ответ на действия факторов окружающей среды, встроены в поверхность клеточной мембраны. Таким образом осуществляется восприятие сигналов из внешней среды и передача команд в клетку.

Есть еще регуляторная функция, которая присуща белкам-гормонам, влияющим на обмен веществ. Гормоны поддерживают постоянную концентрацию веществ в крови, а также принимают участие в росте, размножении и прочих жизненно важных процессов.

Инсулин — самый известный гормон, отвечающий за снижение уровня сахара в крови. При недостатке инсулина уровень сахара в крови повышается, что приводит к возникновению сахарного диабета. Разнообразные белки-ферменты также выступают в роли главных регуляторов биохимических процессов в организме (каталитическая функция).

Белки — энергетический материал. В результате расщепления 1 грамма белка до конечных продуктов происходит выделение 17,6 кДж энергии, которая используется в большинстве жизненно важных процессов в клетке.

Функции белков в таблице:

Строение и функции белков

Разобравшись со строением и функциями белков, переходим к ферментам.

Ферменты и их роль в клетке

Ферменты или энзимы — это особые белки, которые присутствуют в любом организме и выполняют функцию биологических катализаторов.

Читайте также:
Как сравнить длины отрезков: наложение и измерение, объяснение и примеры

Протекание химических реакций в живой клетке зависит от умеренной температуры, нормального давления и нейтральной среды. Такие условия обеспечивают довольно медленное течение реакций синтеза или распада веществ в клетке. Однако именно ферменты ускоряют реакции путем снижения энергии активации, при этом не происходит изменений их общего результата. Чтобы придать молекулам реакционную способность, в случае наличия ферментов необходимо гораздо меньше энергии.

При прямом или косвенном участии ферментов протекают все процессы в живом организме.

Составляющие компоненты пищи — белки, углеводы, липиды и др. — под влиянием ферментов расщепляются до простейших соединений. Позже из них синтезируются новые, присущие данному виду макромолекулы. В случае нарушения образования и активности ферментов возникают тяжелые заболевания.

Ферментативный катализ протекает в соответствии с теми же законами, что и неферментативный катализ в химической промышленности. Но у ферментативного катализа есть и определенные отличия. Ему характерная высокая степень специфичности — фермент катализирует только одну реакцию или действует в отношении только одного типа связи.

Все это обеспечивает регулирование жизненно важных процессов, которые происходят в клетке и организме: фотосинтеза, дыхания, пищеварения и др.

Только одно вещество катализирует расщепление фермент уреаза. Это вещество — мочевина. При этом, фермент не действует каталитически на структурно родственные соединения.

Теория активного центра — важный момент для понимания того, каков механизм действия ферментов с характерной им высокой специфичностью. Согласно этой теории, молекула фермента содержит один или несколько участков, где катализ осуществляется благодаря тесному (во множестве мест) контакту между молекулами фермента и субстрата (специфического вещества). Активным центром выступает функциональная группа (например, OH — группа аминокислоты серина) или отдельная аминокислота.

Действие катализатора нуждается в объединении нескольких аминокислотных остатков, которые располагаются в определенной последовательности. В среднем требуется от 3 до 12 остатков.

Формирование активного центра может происходить также в результате связи ферментов с ионами металлов, витаминами и прочими соединениями небелковой природы. Это коферменты или кофакторы.

Форма активного центра и его химическое строение таковы, что подразумевают связь только с определенными субстратами за счет их идеального соответствия друг другу — взаимодополняемости или комплементарности.

Другие аминокислотные остатки обеспечивают большой молекуле фермента определенную глобулярную форму — она нужна для эффективной работы самого центра.

Вокруг большой молекулы фермента образуется сильное электрическое поле. Это поле обеспечивает ориентацию молекул субстрата и их ассиметричная форма. Происходит ослабевание химических связей, и начальная затрата энергии на катализируемую реакцию сокращается. При этом, скорость реакции увеличивается.

За одну минуту одна молекула фермента каталазы расщепляет свыше 5 млн. молекул перекиси водорода, возникающая при окислении в организме различных соединений.

Наблюдается изменение конфигурации активного центра некоторых ферментов в присутствии субстрата. Чтобы обеспечить наибольшую каталитическую активность, этот фермент специально ориентирует свои функциональные группы.

При присоединении молекул субстрата к ферменту, в определенных пределах наблюдается изменение их конфигурации. Это позволяет увеличить реакционную способность функциональных групп центра. Распад комплекса фермента и субстрата происходит на заключительном этапе химической реакции — с образованием конечных продуктов и свободного фермента. Происходит освобождение активного центра, в результате чего он снова может принимать новые молекулы субстрата.

Множество факторов определяют скорость реакций с участием ферментов. К ним относятся:

  • концентрация фермента;
  • природа субстрата;
  • давление;
  • температура;
  • кислотность среды;
  • наличие ингибиторов и др.

Скорость биохимических реакций минимальна при температуре около 0 по Цельсию. Такое свойство широко применяется в различных отраслях, в частности — в медицине и сельском хозяйстве.

Для снижения интенсивности биохимических реакций и продления жизни, органы человека, планируемые к пересадке (почки, селезенка, печень, сердце), охлаждают. Быстрое замораживание пищевых продуктов предотвращает размножение микроорганизмов и инактивирует ферменты, в результате чего пищевые продукты не разлагаются.

Эта статья поможет вам разобраться в свойствах и функциях белков (функции белков представлены в таблице).

Х и м и я

Белки – природные высокомолекулярные азотосодержащие органические соединения. Они играют первостепенную роль во всех жизненных процессах, являются носителями жизни. Белки содержатся во всех тканях организмов, в крови, в костях.

Белок, также как углеводы и жиры, – важнейшая составляющая часть пищи человека.

Химическое строение белков

Молекулы белков состоят из остатков аминокислот, соединённых в цепочку пептидной связью.

Строение белковой молекулы

Пептидная связь возникает при образовании белков в результате взаимодействия аминогруппы (—NH2) одной аминокислоты с карбоксильной группой (—СООН) другой аминокислоты.

Из двух аминокислот образуется дипептид (цепочка из двух аминокислот) и молекула воды.

Десятки, сотни и тысячи молекул аминокислот, соединяясь друг с другом, образуют гигантские молекулы белков.

В молекулах белков многократно повторяются группы атомов -СО-NH-; их называют амидными, или в химии белков пептидными группами. Соответственно белки относят к природным высокомолекулярным полиамидам или полипептидам.

Читайте также:
Жизнь в Тихом океане: формирование и распространение морских организмов

Общее число встречающихся в природе аминокислот достигает 300, однако некоторые из них достаточно редки.

Среди аминокислот выделяется группа из 20 наиболее важных. Они встречаются во всех белках и получили название альфа-аминокислот.

Всё многообразие белков в большинстве случаев образовано этими двадцатью альфа-аминокислотами. При этом для каждого белка строго специфичной является последовательность, в которой остатки входящих в его состав аминокислот соединяются друг с другом. Аминокислотный состав белков определяется генетическим кодом организма.

Белки и пептиды

И белки, и пептиды – это соединения, построенные из остатков аминокислот. Различия между ними колличественные.

Условно считают, что:

  • пептиды содержат в молекуле до 100 аминокислотных остатков (что соответствует молекулярной массе до 10 000), а
  • белки – свыше 100 аминокислотных остатков (молекулярная масса от 10 000 до нескольких миллионов).

В свою очередь в группе пептидов принято различать:

  • олигопептиды (низкомолекулярные пептиды), содержащие в цепи не более 10 аминокислотных остатков, и
  • полипептиды, в состав цепи которых входит до 100 аминокислотных остатков.

Для макромолекул с числом аминокислотных остатков, приближающимся или немного превышающим 100, понятия полипептидов и белков практически не разграничиваются и часто являются синонимами.

Структура белков. Уровни организации.

Молекула белка это чрезвычайно сложное образование. Свойства белка зависят не только от химического состава его молекул, но и от других факторов. Например, от пространственной структуры молекулы, от связей между атомами, входящих в молекулу.

Выделяют четыре уровня структурной организации молекулы белка.

1. Первичная структура

Первичная структура представляет собой последовательность расположения остатков аминокислот в полипептидных цепях.

Последовательность остатков аминокислот в цепи является наиболее важной характеристикой белка. Именно она определяет основные его свойства.

Белок каждого человека имеет свою уникальную первичную структуру, связанную с генетическим кодом.

2. Вторичная структура.

Вторичная структура связана с пространственной ориентацией полипептидных цепей.

Её основные виды:

  • альфа-спираль,
  • бетта-структура (имеет вид складчатого листа).

Вторичная структура закрепляется, как правило, водородными связями между атомами водорода и кислорода пептидных групп, отстоящих друг от друга на 4 звена.

Водородные связи как бы сшивают спираль, удерживая полипептидную цепь в закрученном состоянии.

Структуры организации молекулы белка

3. Третичная структура

Третичная структура отражает пространственную форму вторичной структуры.

Например, вторичная структура в форме спирали, в свою очередь, может иметь шаровидную или яйцевидную форму.

Третичная структура стабилизируется не только водородными связями, но и другими видами взаимодействия, например ионным, гидрофобным, а также дисульфидными связями.

4. Четвертичная структура

Первые три уровня характерны для структурной организации всех белковых молекул.

Четвёртый уровень встречается при образовании белковых комплексов, состоящих из нескольких полипептидных цепей.

Это сложное надмолекулярное образование, состоящее из нескольких белков, имеющих свою собственную первичную, вторичную и третичную структуры.

В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки.

Ассоциация полипептидных цепей в четвертичную структуру может приводить к возникновению новых биологических свойств, отсутствующих у исходных белков, образующих эту структуру.

В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной.

Классификация белков

Ввиду многообразия пептидов и белков существует несколько подходов к их классификации. Их можно классифицировать по биологическим функциям, составу, пространственному строению.

По составу белки подразделяются на:

При гидролизе простых белков в качестве продуктов расщепления получаются только альфа-аминокислоты.

Сложные белки наряду с собственно белковой частью, состоящей из альфа-аминокислот, содержит органическую или неорганическую части непептидной природы, называемые простетическими группами.

Примерами сложных белков могут служить транспортные белки миоглобин и гемоглобин, в которых белковая часть – глобин – соединена с простетической группой – гемом. По типу простетической группы их относят к гемопротеинам.

Фосфопротеины содержат остаток фосфорной кислоты, металлопротеины – ионы метала.

Смешанные биополимеры представляют собой также сложные белки. В зависимости от природы простетической группы их подразделяют на:

  • Гликопротеины (содержат углеводную часть),
  • Липопротеины (содержат липидную часть),
  • Нуклеопротеины (содержат нуклеиновые кислоты).

В организме белки редко встречаются в «чистом» виде. В основном они входят в состав сложных образований с высоким уровнем организации, включающих в качестве субъединиц другие биополимеры и различные органические и неорганические группировки.

По пространственной структуре белки делятся на два больших класса:

  • Глобулярные и
  • Фибриллярные.

Для глобулярных белков более характерна альфа-спиральная структура, а цепи их изогнуты в пространстве так, что макромолекула приобретает форму сферы.

Глобулярные белки растворяются в воде и солевых растворах с образованием коллоидных систем.

Примеры глобулярных белков – альбумин (яичные белок), глобин (белковая часть гемоглобина), миоглобин, почти все ферменты.

Для фибриллярных белков более характерна бетта-структура. Как правило, они имеют волокнистое строение, не растворяются в воде и солевых растворах.

Читайте также:
Влияние человека на природу: негативное воздействие на окружающую среду

К ним относятся многие широко распространённые белки – бетта-кератин (волосы, роговая ткань), бетта-фиброин (шёлк), миоинозин (мускульная ткань), коллаген (соединительная ткань).

Функции белков в организме.

Классификация белков по их функциям является достаточно условной, так как один и тот же белок может выполнять несколько функций.

Ниже перечислим основные функции белков в организме:

1. Каталитическая функция.

Белки этой группы называются ферментами. Ферменты катализируют различные химические реакции. Например, реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм).

Примеры каталитических белков: каталаза, алкогольдегидрогеназа, пепсин, трипсин, амилаза и пр.

2. Структурная функция

Придают форму клетке и её органоидам. Например, мономеры актина и тубулина формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму. Коллаген и эластин — основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

3. Защитная функция

Существует несколько видов защитных функций белков:

  • Физическая защита Физическую защиту организма обеспечивают коллаген — белок, образующий основу межклеточного вещества соединительных тканей (в том числе костей, хряща, сухожилий и глубоких слоёв кожи (дермы)); кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. производных эпидермиса. Обычно такие белки рассматривают как белки со структурной функцией. Примерами белков этой группы служат фибриногены и тромбины, участвующие в свёртывании крови.
  • Химическая защита Связывание токсинов белковыми молекулами может обеспечивать их детоксикацию. Особенно важную роль в детоксикации у человека играют ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма.
  • Иммунная защита Белки, входящие в состав крови и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов. Они нейтрализуют бактерии, вирусы или чужеродные белки.

4. Регуляторная функция

Белки этой группы регулируют различные процессы, протекающие в клетках или в организме. К белкам этой группы относятся: белки-гормоны, белки-рецепторы и пр.

Гормоны переносятся кровью. Большинство гормонов животных — это белки или пептиды. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин, который регулирует концентрацию глюкозы в крови.

5. Сигнальная функция

Сигнальная функция белков — способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, о́рганами и организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др. Связывание гормона с его рецептором является сигналом, запускающим ответную реакцию клетки.

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

6. Транспортная функция

Участие белков в переносе веществ в клетки и из клеток, в их перемещениях внутри клеток, а также в их транспорте кровью и другими жидкостями по организму.

Примером транспортных белков можно назвать гемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов.

Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость.

7. Запасная (резервная) функция

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений (например, глобулины 7S и 11S) и яйцеклетках животных. Ряд других белков используется в организме в качестве источника аминокислот. Примерами резервных белков являются казеин, яичный альбумин.

8. Рецепторная функция

Белковые рецепторы могут находиться как в цитоплазме, так и встраиваться в клеточную мембрану.

Рецепторы реагирует изменением своей пространственной конфигурации на присоединение к ней молекулы определенного химического вещества, передающего внешний регуляторный сигнал и, в свою очередь, передает этот сигнал внутрь клетки или клеточной органеллы.

9. Моторная (двигательная) функция

Двигательный белок, моторный белок — класс молекулярных моторов, способных перемещаться. Они транформируют химическую энергию, содержащуюся в АТФ, в механическую энергию движения.

Двигательные белки обеспечивают движения организма, например, сокращение мышц.

К двигательным белкам относят белки цитоскелета — динеины, кинезины, а также белки, участвующие в мышечных сокращениях — актин, миозин.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: