Главными частями биологии клеток являются эукариотическая и прокариотическая клетки

Главными частями биологии клеток являются эукариотическая и прокариотическая клетки

Код раздела ЕГЭ: 2.2. Многообразие клеток. Прокариотические и эукариотические клетки. Сравнительная характеристика клеток растений животных, бактерий, грибов.

Подавляющее большинство известных на сегодняшний день живых организмов (растения, животные, грибы и бактерии) имеет клеточное строение. Форма клеток может быть округлой, цилиндрической, кубической, призматической, дисковидной, веретеновидной, звездчатой и др.

Несмотря на все разнообразие клеток, общий план строения для них един: все они содержат наследственную информацию, погруженную в цитоплазму, и окружающую клетку плазматическую мембрану. Снаружи от мембраны у клетки может быть еще клеточная стенка, состоящая из различных веществ, которая служит для защиты клетки и является своего рода ее внешним скелетом.

Прокариоты и эукариоты

В настоящее время различают два основных типа организации клеток: прокариотические и эукариотические.

Прокариотическая клетка не имеет ядра, ее наследственная информация не отделена от цитоплазмы мембранами. Область цитоплазмы, в которой хранится наследственная информация в прокариотической клетке, называют нуклеоидом. Прокариотами являются бактерии.

Эукариотическая клетка — клетка, в которой хотя бы на одной из стадий развития имеется ядро — специальная структура, в которой находится ДНК. К эукариотическим организмам относят растения, животные и грибы.

Размеры прокариотических клеток, как правило, на порядок меньше, чем размеры эукариотических. Большинство прокариот является одноклеточными организмами, а эукариоты — многоклеточными.

Сравнительная характеристика строения клеток растений, животных, бактерий и грибов

Кроме характерных для прокариот и эукариот особенностей, клетки растений, животных, грибов и бактерий обладают еще целым рядом особенностей. Так, клетки растений содержат специфические органоиды — хлоропласты, которые обусловливают их способность к фотосинтезу, тогда как у остальных организмов эти органоиды не встречаются.

Растительные клетки, как правило, содержат крупные вакуоли, наполненные клеточным соком. В клетках животных, грибов и бактерий они также встречаются, но имеют совершенно иное происхождение и выполняют другие функции. Основным запасным веществом, встречающимся в виде твердых включений, у растений является крахмал, у животных и грибов — гликоген, а у бактерий — волютин.

Еще одним отличительным признаком этих групп организмов является организация поверхностного аппарата: у клеток животных организмов клеточная стенка отсутствует, их плазматическая мембрана покрыта лишь тонким гликокаликсом, тогда как у всех остальных она есть. Это целиком объяснимо, поскольку способ питания животных связан с захватом пищевых частиц в процессе фагоцитоза, а наличие клеточной стенки лишило бы их данной возможности. Химическая природа вещества, входящего в состав клеточной стенки, неодинакова у различных групп живых организмов: если у растений это целлюлоза, то у грибов — хитин, а у бактерий — муреин.

Бактериальные клетки имеют следующие характерные для них структуры — плотную клеточную стенку, клеточную мембрану, одну кольцевую хромосому, расположенную в нуклеотиде, рибосомы, мезосомы (внутренние клеточные мембраны), жгутики и клеточные включения в виде жировых капель и гранул полисахаридов. В этих клетках нет многих органоидов, характерных для эукариотических растительных, животных и грибных клеток. По способу питания бактерии делятся на автотрофов, хемотрофов и гетеротрофов.

Клетки растений содержат характерные только для них пластиды — хлоропласты, лейкопласты и хромопласты; они окружены плотной клеточной стенкой из целлюлозы, а также имеют вакуоли с клеточным соком. Все зеленые растения относятся к автотрофным организмам.

У клеток животных нет плотных клеточных стенок. Они окружены клеточной мембраной, через которую происходит обмен веществ с окружающей средой.

Клетки грибов покрыты клеточной стенкой, отличающейся по химическому составу от клеточных стенок растений. Она содержит в качестве основных компонентов хитин, полисахариды, белки и жиры. Запасным веществом клеток грибов и животных является гликоген.

Это конспект по теме «Многообразие клеток. Прокариоты и эукариоты». Выберите дальнейшие действия:

Клетка (биология)

Кле́тка — элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все ткани живых организмов либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. В последнее время принято также говорить о биологии клетки, или клеточной биологии (англ. Cell biology ).

Содержание

Строение клеток

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток — прокариоты (предъядерные) и эукариоты (ядерные). Прокариотические клетки — более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Читайте также:
Обмен веществ и энергии в клетке: синтез АТФ, метаболические процессы и этапы

Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.

Живое содержимое клетки — протопласт — отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка

Прокариоты (от лат. pro — перед, до и греч. κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды.

Эукариотическая клетка

Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочечных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, Аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Схематическое изображение животной клетки, цифрами отмечены некоторые субклеточные компоненты: (1) ядрышко, (2) клеточное ядро, (3) рибосома, (4) везикула, (5) шероховатый эндоплазматический ретикулум (ЭР), (6) аппарат Гольджи, (7) цитоскелет, (8) гладкий ЭР, (9) митохондрия, (10) вакуоль, (11) цитоплазма, (12) лизосома, (13) центриоль

Строение эукариотической клетки
Поверхностный комплекс животной клетки

Состоит из гликокаликса, плазмалеммы и расположенного под ней кортикального слоя цитоплазмы. Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана, толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира — гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет из себя «заякоренные» в плазмалемме молекулы олигосахаридов, полисахаридов, гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в нее молекулами белков, в частности, поверхностных антигенов и рецепторов. В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета — упорядоченные определённым образом актиновые микрофиламенты. Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращение псевдоподий. При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличие микроворсинок).

Структура цитоплазмы

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному) ЭПР, принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки.

Читайте также:
Походы русских путешественников: эпоха географических открытий, исследователи и мореплаватели России
Аппарат Гольджи

Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах Аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Аппарат Гольджи асимметричен — цистерны располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки — везикулы, отпочковывающиеся от эндоплазматического ретикулума. По-видимому, при помощи таких же пузырьков происходит дальнейшее перемещение созревающих белков от одной цистерны к другой. В конце концов от противоположного конца органеллы (транс-Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

Клеточное ядро содержит молекулы ДНК, на которых записана генетическая информация организма. В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками. Компартмент для ядра — кариотека — образован за счет расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счет окружающих его узких компартментов ядерной оболочки. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жесткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой.

Цитоскелет

К элементам цитоскелета относят белковые фибриллярные структуры, расположенные в цитоплазме клетки: микротрубочки, актиновые и промежуточные филаменты. Микротрубочки принимают участие в транспорте органелл, входят в состав жгутиков, из микротрубочек строится митотическое веретено деления. Актиновые филаменты необходимы для поддержания формы клетки, псевдоподиальных реакций. Роль промежуточных филаментов, по-видимому, также заключается в поддержании структуры клетки. Белки цитоскелета составляют несколько десятков процентов от массы клеточного белка.

Центриоли

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3.

Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.

Центриоли, по-видимому, гомологичны базальным телам жгутиков и ресничек.

Митохондрии

Митохондрии — особые органеллы клетки, основной функцией которых является синтез АТФ — универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счет энзиматических систем митохондрий.

Внутренний просвет митохондрий, называемый матриксом отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии.

Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы, что безусловно указывает на симбиотическое происхождение этих органелл. В ДНК митохондрий закодированы совсем не все митохондриальные белки, большая часть генов митохондриальных белков находятся в ядерном геноме, а соответсвующие им продукты синтезируются в цитоплазме, а затем транспортируются в митохондрии. Геномы митохондрий отличаются по размерам: например геном человеческих митохондрий содержит всего 13 генов. Самое большое число митохондриальных генов (97) из изученных организмов имеет простейшее Reclinomonas americana.

Сопоставление про- и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970—1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот — обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеткок организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот – например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних. Так, размеры прокариотических клеток составляют в среднем 0,5—5 мкм, размеры эукариотических — в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток — это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

Читайте также:
Что такое разность чисел в математике: определение, правила нахождения

Анаплазия

Разрушение клеточной структуры (например, при злокачественных опухолях) носит название анаплазии.

История открытия клеток

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В 1663 году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа. Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В 1674 году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, 1632—1723) с помощью микроскопа впервые увидел в капле воды «зверьков» — движущиеся живые организмы. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. Однако клеточная теория строения организмов сформировалась лишь к середине XIX века, после того как появились более мощные микроскопы и были разработаны методы фиксации и окраски клеток. Одним из её основоположников был Рудольф Вирхов, однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.

Строение клеток прокариот и эукариот: сходства и различия

Организмы одноклеточных и многоклеточных делятся на две категории — эукариоты и прокариоты.

Клетки животных, а также почти все растения и грибы обладают интерфазным ядром. Кроме того, прокариотические и эукариотические клетки (прокариоты и эукариоты) имеют стандартные для всех клеток органоиды. Такие организмы называются ядерными или эукариотами.

Прокариоты или доядерные — это не такая большая категория организмов, как эукариоты, но более древняя по своему происхождению. К ним относятся бактерии сине-зеленые водоросли (цианобактерии). У них нет настоящего ядра и большинства органоидов, присущих цитоплазме.

Но у эукариот и прокариот есть свои особенности. Обратимся к сравнению клеток прокариот и эукариот, в частности, рассмотрим строение прокариотической и эукариотической клеток, а также обозначим различия прокариот и эукариот.

Сравнительная характеристика прокариот и эукариот

Характеристика клеток прокариот

При сравнении прокариот и эукариот важно подробно остановиться на строении.

Прокариотическая и эукариотическая клетки имеют разное строение. Строение клеток прокариот достаточно простое. Клетка прокариот не имеет ядра, ядрышка и хромосом. Клеточное ядро в этом случае заменяет нуклеоид. Он представляет собой похожее на ядро образование, без оболочки с одной кольцевой молекулой ДНК, которая связана с небольшим количеством белка. Также можно сказать, что это скопление белков и нуклеиновых кислот: они лежат в цитоплазме и не отделены от нее мембранами.

Последний момент является ключевым для деления клеток на прокариот и эукариот (доядерные и ядерные). Далее мы посмотрим сравнение эукариотических и прокариотических клеток в таблице.

В прокариотических клетках нет внутренних мембран — за исключением вмятин плазмолеммы. Исходя из этого получается, что органеллы прокариот немногочисленны: митохондрий, эндоплазматической сети, хлоропластов, лизосом, комплекса Гольджи. Все перечисленное есть в эукариотических клетках — там они окружены мембраной. Вакуоли также отсутствуют.

В прокариотических клетках есть только одна единственная органелла — это рибосома. Но здесь рибосомы мельче, чем у клеток эукариот.

Строение клетки прокариот характеризуется тем, что у клеток есть плотная клеточная стенка, которая их покрывает, и часто слизистая капсула.

Клеточная стенка состоит из муреина. Молекула муреина, в свою очередь, включает параллельно расположенные полисахаридные цепи: они сшиты друг с другом короткими цепями пептидов.

Плазматическая мембрана характеризуется тем, что у нее есть способность прогибаться внутрь цитоплазмы и образовывать, таким образом, мезосомы. На мембранах мезосом находятся окислительно-восстановительные ферменты, а фотосминтезирующие прокариоты имеют также соответствующие пигменты: бактериохлорофилл (бактерии) и фикобилины (цианобактерии). За счет этого мембраны получают возможность осуществлять функции, свойственные митохондриям, хлоропластам и другим органеллам.

Читайте также:
Россия: реки, самая длинная в Европе и полноводная река страны и их значение

Для прокариот характерно бесполое размножение. Оно происходит в результате простого деления клетки пополам.

Сравнительная характеристика клеток, представленных в таблице, поможет различать два типа клеток без каких-либо проблем.

Сравнительная характеристика прокариот и эукариот в таблице:

Сравнительная характеристика прокариот и эукариот

Если посмотреть на сравнение клеток прокариот и эукариот в таблице, то становится понятно, в чем заключается их похожесть и отличия. В таблице прокариоты и эукариоты — это практически две разные клетки.

Кстати, сравнение клеток прокариот и эукариот в таблице в 9 классе уже необходимо уметь делать.

Сравнительная характеристика эукариот и прокариот будет неполной без анализа первых. Так что помимо сравнительной характеристики клеток в таблице нужно знать, что собой представляют эукариоты.

Характеристика клеток эукариот

Эукариотическая и прокариотическая клетки обладают разным составом.

Несмотря на то, что клетки эукариот включают те же структурные элементы, что и прокариотические клетки, строение клетки эукариот сложнее. К таким элементам относятся цитоплазма, клеточная стенка эукариот, плазмолемма.

Строение клеток эукариот характеризуется разделением на компартменты (реакционные пространства) при помощи множества мембран. В каждом из компартментов происходят разнообразные химические реакции — одновременно и независимо друг от друга.

Ниже представлены сведения об эукариотической клетке в таблице (сравнение клеток разных царств эукариот не приводим).

Строение эукариотической клетки в таблице, а точнее, в одной картинке:

Сравнительная характеристика прокариот и эукариот

​​​​​​​

Из таблицы строения эукариотической клетки понятно, насколько сложным оно является.

Главные функции в клетке выполняют ядро и различные органеллы, такие как митохондрии, комплекс Гольджи, рибосомы и др. Что касается ядра, пластид и митохондрий, то они отделены от цитоплазмы при помощи двухмембранной оболочки. Генетический материал содержится в ядре клетки.

Функция хлоропластов — улавливание солнечной энергии и преобразование ее в химическую энергию углеводов при помощи фотосинтеза.

Митохондрии получают энергию в процессе расщепления белков, углеводов, жиров и других органических соединений.

Эндоплазматическая сеть и комплекс Гольджи — это мембранные системы цитоплазмы эукариотических клеток. Их наличие обеспечивает нормальное осуществление всех жизненных процессов в клетке.

Лизосомы, вакуоли и пероксисомы отвечают за выполнение специфических функций.

Немембранное происхождение имеют хромосомы, рибосомы, микротрубочки и микрофиламенты.

Основной способ размножения эукариотических клеток — митоз.

Эта основная информация по сравнению прокариотической и эукариотической клетки. Отличия прокариот от эукариот в таблице наглядно видны.

Эукариотическая клетка строение, свойства и функции (Таблица)

Эукариоты или ядерные, — это надцарство живых организмов, клетки в которых содержится ядро. Все организмы, кроме прокариот (бактерий и архей), являются ядерными. Вирусы и вироиды не относятся ни к прокариотам, ни эукариотам.

Эукариотические клетки в основном намного крупнее прокариотических, разница в объёме достигает тысяч раз. Клетки эукариот включают около десятка видов различных структур – органеллы, из которых многие отделены от цитоплазмы одной или несколькими мембранами. Ядро — часть клетки, окружённая у эукариот двойной мембраной (двумя элементарными мембранами) и содержащая генетический материал: молекулы ДНК, «упакованные» в хромосомы. Ядро обычно одно, но бывают и многоядерные клетки.

Строение эукариотической клетки схема

Таблица строение эукариотической клетки и функции

Строение и свойства эукариотической клетки

Органоиды, характерные для животной и растительной клеток

Тонкая пленка 7-10мк, состоящая из двойного слоя фосфолипидов, с включением белков. Гидрофобные (отталкивающие воду) молекулы липидов погружены в толщу мембраны, а гидрофильные – обращены наружу в окружающую водную среду. К некоторым белкам на поверхности клеток прикреплены углеводы; такие белки называют гликопротеинами, они являются рецепторами. Снаружи углеводный слой – гликока-ликс. Белки, гликопротеины и липиды, находящиеся на поверхности разных клеток, очень специфичны и являются указателями типа клеток. С их помощью клетки «узнают» друг друга

— Изолируетклетку от окружающей среды.

— Обеспечивает обмен веществ и энергии между клеткой и внешней средой, движение клеток и сцепление их друг с другом.

— Соединяет клетки в ткани.

— Клеточная мембрана обладает избирательной проницаемостью, регулирует поступление веществ в клетку, водный баланс, выведение продуктов обмена.

— Участвует в фагоцитозе и пиноцитозе.

— Большинство мембранных белков служат катализаторами химических реакций, осуществляют транспорт веществ или являются рецепторами

Цитоплазма – коллоидный раствор различных солей и органических веществ – цитозоль. Вода составляет 60-90 % всей массы цитоплазмы. Белки – 10-20 %, а иногда до 70 % сухой массы. Система белковых нитей, пронизывающая цитоплазму называется цитоскелетом. Кроме белков в состав цитоплазмы могут входить липиды 23 %, различные органические 1,5 % и неорганические соединения 1,5 %. Цитоплазма находится в постоянном движении

Читайте также:
Франция: города, символы, регионы, культура и достопримечательности

— Жидкая среда клетки для химических реакций.

— Участвует в передвижении веществ.

— Поддерживает тургор клетки.

— Механическая функция, за счет цитоскелета

Ядро – важнейший органоид эукариотической клетки, в прокариотической клетке отсутствует

Окружено двухслойной пористой мембраной, образующей комплекс с остальными мембранами клетки. Содержит хроматин – комплекс ДНК и белка, образует хромосомы в момент деления клетки. Ядрышко – состоит из белка и РНК, может быть несколько. Ядерный сок – кариолимфа – коллоидный раствор органических и неорганических веществ

— Хранение наследственной информации в хромосомах.

— Регуляция синтеза белка и процессов происходящих в клетке.

— Синтез РНК (иРНК, тРНК, рРНК), а также сборка рибосом.

— Руководит процессами самовоспроизведения и процессами развития организма

Эндоплазматическая сеть (ретикулум)

Шероховатый (гранулярный) ретикулум – представляет собой систему мембран, образующих канальцы, цистерны, трубочки, несущую рибосомы. Строение мембран сходно с наружной мембраной и образуете ней единую сеть

— Синтез белка на рибосомах.

— Транспорт веществ по цистернам и трубочкам.

— Деление клетки на отдельные секции – компартменты

Гладкий ретикулум – имеет такое же строение, как и шероховатый, но не несет рибосом

— Участвует в синтезе липидов, белок не синтезируется.

— Остальные функции, сходные с шероховатым ретикулум

Мельчайшие органоиды клетки диаметром около 20нм. Рибосомы состоят из двух неравных субъединиц (частиц): большой и малой. В состав рибосомы входят рибосомальная РНК и белки. Синтезируются в ядрышке. Объединяются вдоль иРНК в цепочки, образуя полисому

Биосинтез первичной структуры белка по принципу матричного синтеза

Представляет собой окруженный одинарной мембраной пузырек диаметром 0,2-0,8мкм, имеет овальную форму. Содержит набор пищеварительных ферментов, синтезированных на рибосомах. Образуется в комплексеГольджи. Прочная мембрана лизосом препятствует проникновению ферментов в цитоплазму. Входит в состав единой мембранной системы клетки

— Пищеварительная – обеспечивает переваривание органических веществ, попавших в клетку при фагоцитозе и линоцитозе

— При голодании лизосомы могут участвовать в растворении органоидов, клеток и частей организма (утрата хвоста у головастика) – автолизе

Двухмембранные органоиды. Наружная мембрана гладкая, а внутренняя образует многочисленные складки и выросты -кристы. Внутри митохондрия заполнена бесструктурным матриксом. В матриксе содержатся молекулы ДНК, РНК, рибосомы. Митохондрии имеют разнообразную форму: округлые, овальные, цилиндрические и палочковидные тельца

— Энергетический и дыхательный центр клеток.

— Освобождение энергии в процессе дыхания.

— «Запасание» энергии в виде молекул АТФ. Источником энергии являются органические вещества, окисляющиеся под действием ферментов до СO2 и Н2O

Клеточный центр – характерен для клеток животных и низших растении

Органоид немембранного строения, состоящий из двух центриолей – цилиндрической формы, расположенных перпендикулярно друг другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована из 9пар микротрубочек.

Участвуют в делении клеток животных и низших растений, образуя веретено деления

Аппарат (комплекс) Гольджи

Система уплощенных цистерн (трубочек, полостей), ограниченных двойными мембранами, образующих по краям пузырьки (диктиосомы). В растительных клетках цистерны способны расширяться и превращаться в крупные вакуоли. Входит в единую мембранную систему клетки

— Участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки.

— Вещества упаковываются в пузырьки.

— В растениях – участвуют в построении клеточной стенки.

Микротрубочки – длинные тонкие полые цилиндры, диаметром 25нм. Стенки микротрубочек состоят из белков

— Опорная – образуют внутренний каркас, помогающий клеткам сохранять форму.

— Двигательная – входят в состав ресничек и жгутиков

Микронити – тонкие структуры, состоящие из тысяч молекул белка, соединенных друг с другом

— Образуют опорно-двигательную систему, называемую цитоскелетом.

— Способствуют току цитоплазмы в клетках

Реснички – многочисленные цитоплазматические выросты на поверхности мембраны – образованы микротрубочками, покрытыми мембраной

Обеспечивают передвижение некоторых одноклеточных организмов и ток жидкости в организмах, удаление частичек пыли (дыхательный реснитчатый эпителий)

Жгутики – единичные выросты на поверхности клетки. Реснички и жгутики имеют общую основную структуру: девять пар микротрубочек, расположенных кольцом, две одиночные микротрубочки в центре и базальное тельце в основании

Служат для движения одноклеточным организмам, сперматозоидам,зооспорам

Непостоянные структуры цитоплазмы. Плотные включения в виде гранул

Содержат запасные питательные вещества (крахмал, жиры, белки, сахар)

Органоиды, характерные только для растительных клеток

Содержимое пластид называют стромой. Наружная мембрана гладкая, внутренняя образует пластинчатые апячивания – тилакоиды. Большая часть их укладывается в виде стопки монет и образует граны.

Читайте также:
Сколько органов чувств у человека: их виды и функции, строение анализаторов, необычные способности организма

В мембранах гран находится хлорофилл, придающий зеленую окраску и обеспечивающий протекание световой фазы светосинтеза

Округлые, бесцветные органоиды, внутренняя мембрана образует 2-3 выроста. На свету преобразовываются в хлоропласты

Служат местом отложения запасных питательных веществ, чаще всего крахмала

Двухмембранные шарообразные органоиды, шаровидной формы. Содержат пигменты – каротиноиды, окраска желтая, красная, оранжевая

Придают лепесткам цветков, плодам и прицветным листьям окраску, привлекают насекомых-опылителей

Клеточная оболочка (стенка)

Состоит из целлюлозы, имеет поры. Имеется в клетках грибов, состоит из хитина

Защищает клетку от внешних воздействий, придает прочность, является скелетом растения

Вакуоль, характерна только для растительных клеток

Мембранная полость, заполненная клеточным соком. Вакуоль является производной эндоплазматической сети. Клеточный сок является водным раствором органических веществ: органических кислот, сахара, солей, белков, дубильных веществ, алкалоидов, пигментов и так далее.

— регуляция водно-солевого обмена;

— поддержание тургорного давления;

— накопление продуктов обмена веществ и запасных веществ;

— выведение из обмена токсичных веществ

_______________

Источник информации:

1. Биология в таблицах и схемах / Спб. — 2004.

2. Биология: Справочник для старшеклассников и поступающих в вузы/ Т.Л.Богданова —М.: 2012.

Органоиды клетки

Органоиды (органеллы) клетки – специализированные структуры клетки, выполняющие различные жизненно необходимые функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции дыхания, выделения, пищеварения и многие другие.

  • Немембранные – рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
  • Одномембранные – ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
  • Двумембранные – ядро, пластиды, митохондрии

Строение клетки

Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо упомянуть о том, без чего вообще не существует клетки – о клеточной мембране. Клеточная мембрана ограничивает клетку от окружающего мира и формирует ее внутреннюю среду.

Клеточная мембрана (оболочка)

Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз :) У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.

Клеточная мембрана представляет собой билипидный слой (лат. bi – двойной + греч. lipos – жир), который пронизывают молекулы белков.

Строение мембраны

Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а гидрофильные “головки” смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично – погруженные белки, имеются также поверхностно лежащие белки – периферические.

  • Поддержании постоянства структуры мембраны
  • Рецепции сигналов из окружающей среды (химического раздражения)
  • Транспорте веществ через мембрану
  • Ускорении (катализе) реакций, которые ассоциированы с мембраной

Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. “Заякоренные” молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану.

Гликокаликс

Теперь вы знаете, что гликокаликс – надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны регулируют жизнедеятельность клеток.

Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.

Инвазия ВИЧ в клетку

Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются :) Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее.

  • Разделительная (барьерная) – образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
  • Поддержание обмена веществ между внешней средой и цитоплазмой

Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности – мочевина – удаляются из клетки во внешнюю среду.

    Пассивный – часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии или облегченной (с участием белка-переносчика) диффузии.

Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.

Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.

Транспорт веществ через мембрану

  • Фагоцитоз (греч. phago – ем + cytos – клетка) – поглощение твердых пищевых частиц и бактерий фагоцитами
  • Пиноцитоз (греч. pino – пью) – поглощение клеткой жидкости, захват жидкости клеточной поверхностью

Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.

В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение.

Фагоцитоз и пиноцитоз

Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω – вне, снаружи). Таким образом, процессы экзоцитоза и эндоцитоза противоположны.

Клеточная стенка

Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует. Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму. Клеточная стенка бактерий состоит из полимера муреина, у грибов – из хитина, у растений – из целлюлозы.

Клеточная стенка

Цитоплазма

Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты – удалить из клетки.

Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.

Цитоплазма

Прокариоты и эукариоты

Прокариоты (греч. πρό – перед и κάρυον – ядро) или доядерные – одноклеточные организмы, не обладающие в отличие от эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды. Их генетический материал представлен в виде кольцевой молекулы ДНК – нуклеоида (нуклеоид – ДНК–содержащая зона клетки прокариот). К прокариотам относятся бактерии, в их числе цианобактерии (цианобактерий по-другому называют – сине-зеленые водоросли).

Эукариоты (греч. εὖ – хорошо + κάρυον – ядро) или ядерные – домен живых организмов, клетки которых содержат оформленное ядро. Растения, животные, грибы – относятся к эукариотам.

Прокариоты и эукариоты

Немембранные органоиды
  • Рибосома

Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке.

Запомните ассоциацию: “Рибосома – фабрика белка”. Именно здесь в ходе матричного биосинтеза – трансляции, с которой подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок – последовательность соединенных аминокислот в заданном иРНК порядке.

Строение рибосомы

Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают определенную форму клетки, участвуют во внутриклеточном транспорте и процессе деления путем образования нитей веретена деления. Микротрубочки также образуют основу органоидов движения: жгутиков (у бактерий жгутик состоит из сократительного белка – флагеллина) и ресничек.

Микрофиламенты – тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме, служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.

Микротрубочки и микрофиламенты

Этот органоид характерен только для животной клетки, в клетках грибов и высших растений отсутствует. Клеточный центр состоит из 9 триплетов микротрубочек (триплет – три соединенных вместе). Участвует в образовании нитей веретена деления, располагается на полюсах клетки.

Клеточный центр

Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.

Жгутики и реснички

Одномембранные органоиды
  • Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum – сеть)

ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности.

Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).

Эндоплазматическая сеть (ЭПС)

Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается вокруг ядра клетки, внешне напоминает стопку блинов. Это – “клеточный склад”. В нем запасаются жиры и углеводы, с которыми здесь происходят химические видоизменения.

Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.

В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.

Комплекс Гольджи

Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) – липазы, протеазы, фосфатазы. Лизосому можно ассоциировать с “клеточным желудком”.

Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце – вторичная лизосома с непереваренными остатками, которые удаляются из клетки.

Процесс фагоцитоза

Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком. В норме у каждой клетки жизненный цикл заканчивается апоптозом – запрограммированным процессом клеточной гибели.

В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.

Лизосома

Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки.

Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных – сократительные вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.

Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму.

Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию.

Вакуоли

Двумембранные органоиды
  • Ядро (“ядро” по лат. – nucleus, по греч. – karyon)

Важнейший компонент эукариотической клетки – оформленное ядро, которое у прокариот отсутствует. Внутренняя часть ядра представлена кариоплазмой, в которой расположен хроматин – комплекс ДНК, РНК и белков, и одно или несколько ядрышек.

Ядрышко – место в ядре, где активно идет процесс матричного биосинтеза – транскрипция, с которым мы познакомимся подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество ядрышек или не найти ни одного.

Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам.

Строение ядра

Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками.

Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы – во время деления, спирализованное ДНК), если же клетка не делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин – деспирализованное ДНК).

Хроматин и хромосомы

Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.

Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна – трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).

Кариотип

Органоид палочковидной формы. Митохондрию можно сравнить с “энергетической станцией”. Если в цитоплазме происходит анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный – аэробный этап (кислородный). В результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы) получаются 36 молекул АТФ.

Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь – кристы, на которых имеется большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена матриксом.

Митохондрия

Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК – нуклеоида (ДНК–содержащая зона клетки прокариот), и рибосом. То есть митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.

В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.

Митохондрий особенно много в клетках мышц, в том числе – в сердечной мышечной ткани. Эти клетки выполняют активную работу и нуждаются в большом количестве энергии.

    Хлоропласт (греч. chlōros – зелёный)

Получил свое название за счет содержащегося в нем зеленого пигмента – хлорофилла (греч. chloros – зеленый и phyllon – лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки – граны. Внутреннее пространство между тилакоидами и мембраной называется стромой.

Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая (светонезависимая) фаза – в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении фотосинтеза в дальнейшем.

Хлоропласт

Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.

Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.

Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов.

Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза.

Пластиды

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Строение животной (человека) и растительной клетки в биологии

Что такое клетка живого организма

Все живое на нашей планете состоит из мельчайших «кирпичиков» — клеток. Их остатки в возрасте 3,5 миллиарда лет были найдены в Австралии. Однако точное время возникновения ученым установить не удалось.

Клетка (по старославянскому — «клеть, вместилище») является биологической единицей строения всех организмов, кроме вирусов и вироидов, которые относятся к внеклеточным формам жизни.

Это слово ввел в науку Робин Гук в 1665 году , когда рассматривал под микроскопом часть пробки, состоявший из множества ячеек – клеток. Ученый решил, что они походят на маленькие комнаты, с живущими в них монахами. Впоследствии, с появлением усовершенствованных микроскопов, учение о клеточном строении организма получило дальнейшее развитие.

Немецкий ученый М.Шлейден обнаружил, что во всех растениях всегда присутствует ядро. Его соотечественник Т.Шванн очень удивился, увидев такое же ядро у животных, исследованиями которых занимался. В 1839 году вышла в свет его книга «Микроскопические исследования», вызвавшая революцию в биологии. Основная идея книги звучала так – жизнь сосредоточена в клетках! Данный постулат вошел в учебники под названием «Клеточная теория Шлейдена — Шванна », которая стала величайшим открытием в биологии.

Главные положения клеточной теории

  • Клетка существует, как единица строения и развития всего живого (кроме вирусов).
  • Простые и сложные организмы имеют одинаковое строение и химический состав; способны к обмену информацией , веществами и энергией с окружающей средой .
  • В многоклеточных организмах объединены в многочисленные ткани органов и дифференцированы по строению и функциям.
  • Являет собой живую систему саморегуляции, самообновления и воспроизведения.

В чем разница между клетками

Несмотря на то что клеточные структуры обладают сходным строением, они существенно отличаются по своим формам, размерам и функциям. Размеры их колеблются от 0,1мкм до 100мкм и более. Самой большой является страусиное яйцо ( d =15см).

Раздел биологии, который изучает строение, а также жизнедеятельность клетки, называется цитологией или клеточной биологией.

Биологическая единица является мини-организмом. И этот организм имеет «органы» — органоиды, которые были открыты с усилением мощности световых и электронных микроскопов.

Главным органоидом является ядро. Именно по наличию или отсутствию ядра все организмы подразделяются на:

  • эукариотические или ядерные (животные, растения, грибы)
  • прокариотические или доядерные (бактерии, в том числе и сине-зеленые водоросли, а также археи)

Это интересно: что такое фототрофы — понятие и примеры.

Прокариотическая и эукариотическая клетка: отличие их друг от друга

  1. Самым главным отличием является отсутствие у прокариотов оформленного ядра. Ядерным аппаратом у доядерных организмов является нуклеоид (участок цитоплазмы, в котором располагается кольцевая хромосома с ДНК). К митозу или мейозу бактерии из-за отсутствия ядра не способны. Размножаются путем деления надвое или почкованием.
  2. По сравнению с эукариотами прокариоты в десять раз меньше по диаметру и в тысячу раз меньше по объему. Прокариоты имеют более мелкие рибосомы (70 S ) по сравнению с эукариотами (80 S ).
  3. У доядерных организмов отсутствуют органоиды. Их заменяют мезосомы (выросты плазматической мембраны, похожи на кристы митохондрий). В состав клеточной стенки прокариот входят муреин или пектин (сложные углеводы ), у растений – целлюлоза, у грибов – хитин .
  4. Прокариоты и эукариоты имеют цитоплазму, плазматическую мембрану и рибосому.

Общее строение

Основные органоиды клеток

Протопласт отграничен от окружающей среды специальной мембраной или плазмолеммой. Межклеточное вещество, в котором располагаются клетки, обеспечивает их питанием, дыханием и механической прочностью. Изнутри клеточная единица заполнена цитоплазмой, состоящая из прозрачного вещества — гиалоплазмы. В цитоплазме располагается ядро (самый главный орган) и различные органоиды, выполняющие свои особые функции.

Основные органоиды и их функции

  • Ядро – относится к самому крупному органоиду. Заключена в двухмембранную оболочку, пронизанную ядерными порами (ядерную оболочку ). Содержит одно или несколько ядрышек , хромосомы, ДНК и РНК. Участвует в хранении и передаче наследственной информации .
  • Эндоплазматическая сеть – состоит из одной мембраны . Представляет собой систему канальцев и цистерн , связанных между собой , цитоплазматической мембраной и внешней оболочкой ядра. Бывает гладким и шероховатым (гранулярным). Занимает половину объема клетки. Накапливает и транспортирует органические вещества. На гранулярной ЭПС располагаются рибосомы, осуществляющие синтез белка. На гладкой ЭПС — происходит синтез углеводов и жиров.
  • Аппарат Гольджи – размещается около ядра. Состоит из трубочек, полостей и пузырьков. Накапливает, упаковывает, транспортирует белки, произведенные ЭПС. Также в них происходит синтез полисахаридов. Образует лизосомы.
  • Рибосомы – относятся к немембранным органеллам, состоящих из малой и большой субъединиц (по форме напоминают восьмерку). Содержат белок и РНК. Синтезируют белок в клетке.
  • Митохондрии – двухмембранные органоиды. Имеют внутреннюю мембрану с множественными складками (кристами) и внешнюю гладкую поверхность. Вырабатывают энергию и хранят наследственную информацию в виде собственной ДНК.
  • Лизосомы – одномембранный мешочек округлой формы с ферментами внутри. Осуществляет пищеварение. – состоит из двух центриолей, расположенных парами под углом друг к другу . Принимает участие в делении.
  • Пластиды — относятся к крупным органеллам. Присутствуют исключительно в растительных организмах.
  • Органеллы движения — к ним относятся жгутики и реснички. Образуют собой миниатюрные выросты в виде волосков.

Клеточные процессы происходят при помощи питания, дыхания, обмена веществ и размножения.

Отличие строения клетки человека от растительной

Чем отличаются клетки друг от друга

  1. Основное отличие заключается в том, что растительные клетки покрыты толстой клеточной стенкой из целлюлозы, расположенные снаружи от мембраны. Клетки животных и человека лишены плотной оболочки, поэтому они легко меняют свою форму.
  2. У растений автотрофное питание, у животных — гетеротрофное. Исключением являются растения — паразиты. Как и животные они являются гетеротрофами.
  3. Основной запасной углевод у растений — крахмал , у человека и животных — гликоген.
  4. Растительные организмы имеют хлоропласты, содержащие хлорофилл. Именно благодаря им происходит фотосинтез. В строении животной клетки пластиды отсутствуют.
  5. Форма растительных клеток кубическая или прямоугольная, у животных — круглая.
  6. У растений отсутствуют центриоли и реснички.

Рост растительных организмов происходит за счет поглощения большого количества воды в центральной вакуоли, которая занимает до 90% объема. Животная клетка увеличивается в своих размерах за счет количества клеток. Центральная вакуоль в строении клетки животного отсутствует.

Очень любопытны в этом отношении грибы: они имеют признаки и растительных и животных организмов.

Химическая структура

Клетка состоит из множества химических элементов:

  • Углерод, кислород, азот и водород (составляют 98% состава клетки)
  • Макроэлементы (кальций, калий, натрий,магний, железо и др. образуют 2%)
  • Микроэлементы (йод, цинк, уран и др. – 0, 01% всей клетки).

Из чего состоят клетки

Все химические элементы существуют и в неживой природе, что указывает на единство природы.

В настоящее время изучение биологии клеток имеет прикладное значение при диагностике заболеваний, так как позволяют изучать патологию на основе мельчайшей живой структуры, способной к функционированию и размножению.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: