Как найти периметр треугольника: теорема Пифагора и формула косинусов в зависимости от известных сторон

Формулы определения периметра, площади и сторон треугольника

Треугольник — это элементарная геометрическая фигура, содержащая минимально возможное количество составляющих — три.

Точки соприкосновения сторон являются вершинами его углов, обозначаются заглавными латинскими символами A; B и C. Отрезки между вершинами являются сторонами или гранями треугольника и обозначаются названиями этих вершин: AB; BC; CA или прописной буквой противолежащего угла (вершины): AB=c; BC=a; CA=b.

Периметр равен длине всех сторон фигуры, у треугольника он равен сумме трех сторон:

Высота треугольника — это перпендикуляр от прямой, на которой лежит основание, до одноименной вершины, обозначается h.

Площадь составляет величину поверхности, заключенной внутри фигуры, обозначается S. Произведение основания на высоту дает значение площади. Ее можно определить и по формуле Герона:

  1. S=√(p·(p—a)·(p—b)·(p—c));
  2. p=½P.

Из этого видео вы узнаете, как найти площадь треугольника.

Классификация треугольников

Треугольник состоит из сторон и углов, сумма его углов всегда равна 180 градусов: A+B+C=180°.

  1. Равноугольный: все вершины равны 60°, будет и равносторонним.
  2. Равнобедренный: при равенстве двух граней углы на основании равны.
  3. Разноугольный: все вершины разные, ребра у него тоже разные.
  4. Прямоугольный: один угол равен 90°, примыкающие грани называются катеты, противолежащая — гипотенуза. Бывает равнобедренным (катеты равны) или разноугольным (катеты разные).
  5. Тупоугольный: один угол больше 90°. Может быть равнобедренным или разноугольным.

Как находить периметр треугольника

Описание

Чтобы описать любой треугольник, достаточно указать:

  1. Одну сторону и прилегающие к ней углы.
  2. Две стороны и угол между ними.
  3. Три стороны.

Данных из любого пункта достаточно для построения заданной фигуры и вычисления всех ее параметров, используя теорему косинусов:

Подставляя известные значения, получим уравнение, решив которое узнаем неизвестные величины.

Cos90°=0, поэтому для прямоугольного треугольника c*c=a*a+b*b, где a и b — катеты, c — гипотенуза, сторона, лежащая напротив прямого угла.

Как найти периметр треугольника по формуле

Примеры

Известно, что одна грань равна 9 см и прилегающие углы по 60 градусов. Тогда из того, что сумма углов всегда равна 180°, получаем: 180=60+60+x; x=180—120=60. Все три вершины по 60°, значит, все стороны равны. Периметр составляет P=9+9+9=27 см, полупериметр p=13,5 см. Чтобы найти высоту, нужно опустить перпендикуляр из вершины на основание, получим прямоугольный треугольник с гипотенузой 9 см, катетом 4,5 см и катетом неизвестной длины, равным искомой высоте: 9*9—4,5*4,5=60,75=h 2 .

Высота равна корню квадратному из 60,75 или 7,79422863406 см. Умножаем основание на высоту, делим пополам и получаем площадь: 7,79422863406*9/2=35,074028853 см 2 . Если находить площадь по формуле Герона через полупериметр и ребра, ответ будет одинаковый:

Читайте также:
Титульный лист творческого проекта: как и для чего его нужно оформлять

S=√(13,5·(13,5—9)·(13,5—9)·(13,5—9))=35,074028853 см 2 .

Следующий пример с разносторонним треугольником. Дано: AB=12 см, BC=10 см, CA=8 см. Требуется найти периметр и площадь фигуры. P=a+b+c=BC+CA+AB=10 см+8 см+12 см=30 см. Площадь находим по формуле Герона, подставляя в нее уже известные значения, учитывая, что p=0,5Р; p=15 см. S=√(p·(p—a)·(p—b)·(p—c))=√(15·(15—10)·(15—8)·(15—12))=√15·5·7·3=√1575=39,686269666 см 2 .

Рассмотрим пример, когда известны два катета прямоугольного треугольника. Допустим, они имеют значения два и четыре метра. Тогда гипотенуза будет равна корню квадратному из суммы квадратов катетов √2 2 +4 2 =4,472135955 м. Периметр 2+4+4,472135955=10,472135955. Площадь равна половине произведения катетов S=2·4=8м 2 .

Способы нахождения периметра треугольника

Когда известны две стороны и угол между ними, остается найти только третью сторону по теореме косинусов. Пусть известные стороны составляют значения 16 и 28 метров, а угол между ними будет в 60 градусов, тогда третья сторона будет равна корню квадратному из этого выражения 16 2 +28 2 — 2·16·28·0,5, что составит значение в 24,3310501212 м. Периметр равен 16+28+24,3310501212=68,3310501212≈68,33 м. Полупериметр будет 34,165 м. Подставляя полученные значения в формулу Герона, найдем площадь S=√(34,165·(34,165—16)·(34,165—28)·(34,165—24,33))=193,982314238 м 2 .

Если известно три параметра любого треугольника — два угла и сторона или две стороны и угол между ними, то ничего особенно сложного в нахождении неизвестных параметров треугольника — периметра, площади или высоты — нет. Нужно только внимательно производить простые вычисления. Иногда можно проявить и смекалку, разбив фигуру на несколько более простых в вычислении, например, прямоугольных треугольников. В каждом конкретном случае все зависит от исходных данных. Все формулы и вычисления, приведенные выше, верны для плоских фигур; для расположенных на сферической поверхности ход вычислений будет иным.

Как найти периметр треугольника

Треугольник

Учимся находить периметр треугольника разными способами, а также тренируем полученные знания на примерах задач.

Периметр треугольника

Периметр треугольника — это сумма длин всех его сторон.

Треугольник — это геометрическая фигура, которая состоит из трех точек (вершин), не лежащих на одной прямой. Эти точки попарно соединены тремя отрезками, которые называются сторонами (ребрами) многоугольника.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Читайте также:
Как правильно оформить титульный лист реферата: особенности расположения реквизитов

Рассмотрим несколько способов нахождения периметра рассматриваемой фигуры. Каждая из предложенных формул опирается на те величины, которые нам уже известны.

Способы нахождения

По трем сторонам

По трем сторонам

Если мы уже знаем длину каждого ребра фигуры, расчет периметра будет проходить так:

где a, b и с — это стороны треугольника.

В случае, если нам известны стороны равнобедренного треугольника (у которого два ребра равны), формула для расчета периметра выглядит следующим образом:

где a — основание фигуры, а b и с — равные ребра.

Треугольник может также быть равносторонним (когда все стороны равны). Тогда P будем находить в соответствии с расчетами:

где a — это любая сторона фигуры.

По площади и радиусу вписанной окружности

По площади и радиусу вписанной окружности

Когда нам известна площадь данного многоугольника и радиус вписанной в него окружности, расчет P выглядит так:

где S — площадь фигуры, r — радиус вписанной в нее окружности.

По двум сторонам и углу между ними

По двум сторонам и углу между ними

Так как нам известен угол и две стороны, которыми он образован, мы можем найти третью сторону треугольника по теореме косинусов. И потом уже вычислить сумму длин всех ребер фигуры.

Теорема косинусов выглядит так:

где α — известный угол.

Тогда формула для расчета периметра всей фигуры в этом случае:

По боковой стороне и высоте (для равнобедренного)

По боковой стороне и высоте (для равнобедренного)

Возвращаясь к свойствам равнобедренного треугольника, вспоминаем, что высота, проведенная к основанию треугольника из противоположной вершины, является одновременно высотой, биссектрисой и медианой. Это значит, что оба прямоугольных треугольника, которые она образует, равны между собой.

Формула для поиска периметра нашего равнобедренного будет опираться на теорему Пифагора. Пусть 1/2 основания (с) = d. Тогда:

где a — сторона равнобедренного треугольника и гипотенуза прямоугольного, h — высота равнобедренного и катет прямоугольного.

Не забываем, что d — это лишь половина основания равнобедренного треугольника, поэтому для поиска периметра результат нужно будет умножить на 2.

По двум катетам (для прямоугольного)

По двум катетам (для прямоугольного)

Еще раз вспомним теорему Пифагора для нахождения гипотенузы (обозначим ее буквой с).

где a и b — катеты треугольника.

Подставляем значение c в формулу для нахождения периметра и получаем:

Примеры решения задач

Для тренировки полученных знаний, рассмотрим несколько примеров решения задач на поиск периметра треугольника.

Читайте также:
Микроэкономика изучает проблемы и методы отдельных агентов, субъекты и продукты

Задача №1

Какой P треугольника, если его стороны равны 6 см, 7 см и 3 см.

Решение:

Подставляем в формулу P = a+b+c известные величины и получаем: P = 6+7+3=16 см.

Задача №2

Известно, что основание равнобедренного треугольника равно 6 см, а его боковая сторона — 4 см. Найти P фигуры.

Решение:

Для данного случая подходит формула P=a+2b, подствляем значения: (P=6+4times2 = 14) см.

Задача №3

Нам известно, что площадь треугольника — 24 см 2 , а радиус вписанной в него окружности — 8 см. Найти P.

Решение:

В данном случае рассчитывать P будем следующим образом: (P=fracr) . С уже известными нам величинами получаем: (P=frac8 = 6) см.

Задача №4

Дан равнобедренный треугольник. Нам известна его боковая сторона (4 см) и высота, опущенная к основанию (2 см). Нужно вычислить периметр фигуры.

Решение:

Мы знаем, что в этом случае P вычисляется, как (P=2sqrt+2a) . С имеющимися значениями получается: (P=2sqrt+2times2 = 4sqrt3+4) см.

Ответ: P=4sqrt3+4 см.

Задача №5

Дан прямоугольный треугольник с катетами 5 см и 7 см. Определить периметр фигуры.

Решение:

В формулу (P=sqrt+a+b) подставляем известные значения: (P=sqrt+5+7 = sqrt+12) см.

Как найти периметр треугольника если известны не все стороны

Треугольник с обозначениями

Периметр — это величина, подразумевающая длину всех сторон плоской (двумерной) геометрической фигуры. Для разных геометрических фигур существуют разные способы нахождения периметра.

В данной статье вы узнаете как находить периметр фигуры разными способами, в зависимости от известных его граней.

Возможные методы:

  • известны все три стороны равнобедренного или любого другого треугольника;
  • как найти периметр прямоугольного треугольника при двух известных его гранях;
  • известны две грани и угол, который расположен между ними (формула косинусов) без средней линии и высоты.

Это интересно: что микроэкономика изучает, кратко об основателях и основах науки.

Первый метод: известны все стороны фигуры

Площадь треугольника

Как находить периметра треугольника, когда известны все три грани, необходимо использовать следующую формулу: P = a + b + c, где a,b,c — известные длины всех сторон треугольника, P — периметр фигуры.

Например, известны три стороны фигуры: a = 24 см, b = 24 см, c = 24 см. Это правильная равнобедренная фигура, чтобы вычислить периметр пользуемся формулой: P = 24 + 24 + 24 = 72 см.

Данная формула подходит к любому треугольнику, необходимо просто знать длины всех его сторон. Если хотя бы одна из них неизвестна, необходимо воспользоваться другими способами, о которых мы поговорим ниже.

Читайте также:
Технологическая карта урока по ФГОС; задачи учителя, структура, разработка и образец

Еще один пример: a = 15 см, б = 13 см, c = 17 см. Вычисляем периметр: P = 15 + 13 + 17 = 45 см.

Очень важно помечать единицу измерения в полученном ответе. В наших примерах длины сторон указаны в сантиметрах (см), однако, существуют разные задачи, в условиях которых присутствуют другие единицы измерения.

Второй метод: прямоугольный треугольник и две известные его стороны

Теорема Пифагора

В том случае, когда в задании, которое нужно решить, дана прямоугольная фигура, длины двух граней которой известны, а третья нет, необходимо воспользоваться теоремой Пифагора.

Теорема Пифагора описывает соотношение между гранями прямоугольного треугольника. Формула, описываемая этой теоремой, является одной из самых известных и наиболее часто применяемых теорем в геометрии. Итак, сама теорема:

Стороны любого прямоугольного треугольника описываются таким уравнением: a^2 + b^2 = c^2, где а и b — катеты фигуры, а c — гипотенуза.

  • Гипотенуза. Она всегда расположена противоположно прямому углу (90 градусов), а также является самой длинной гранью треугольника. В математике принято обозначать гипотенузу буквой c.
  • Катеты — это грани прямоугольного треугольника, которые относятся к прямому углу и обозначаются буквами а и b. Один из катетов одновременно является и высотой фигуры.

Таким образом, если условиями задачи заданы длины двух из трех граней такой геометрической фигуры, с помощью теоремы Пифагора необходима найти размерность третьей грани, после чего воспользоваться формулой из первого метода.

Например, мы знаем длину 2-х катетов: a = 3 см, b = 5 см. Подставляем значения в теорему: 3^2 + 4^2 = c^2 => 9 + 16 = c^2 => 25 = c^2 => c = 5 см. Итак, гипотенуза такого треугольника равна 5 см. К слову, данный пример является самым распространенным и называется «Египетский треугольник». Иными словами, если два катета фигуры равны 3 см и 4 см, то гипотенуза составит 5 см соответственно.

Если неизвестна длина одного из катетов, необходимо преобразовать формулу следующим образом: c^2 — a^2 = b^2. И наоборот для другого катета.

Продолжим пример. Теперь необходимо обратиться к стандартной формуле поиска периметра фигуры: P = a + b + c. В нашем случае: P = 3 + 4 + 5 = 12 см.

Третий метод: по двум граням и углу между ними

В старшей школе, а также университете, чаще всего приходится обращаться именно к данному способу нахождения периметра. Если условиями задачи заданы длины двух сторон, а также размерность угла между ними, то необходимо воспользоваться теоремой косинусов.

Читайте также:
Зарегистрироваться на всероссийском официальном сайте ГТО сможет даже школьник!

Данная теорема применима абсолютно к любому треугольнику, что и делает ее одной из наиболее полезных в геометрии. Сама теорема выглядит следующим образом: c^2 = a^2 + b^2 — (2 * a * b * cos(C)), где a,b,c — стандартно длины граней, а A,B и С — это углы, которые лежат напротив соответствующих граней треугольника. То есть, A — угол, противолежащий стороне a и так далее.

Представим, что описан треугольник, стороны а и б которого составляют 100 см и 120 см соответственно, а угол, лежащий между ними, составляет 97 градусов. То есть а = 100 см, б = 120 см, C = 97 градусов.

Все, что нужно сделать в данном случае — это подставить все известные значения в теорему косинусов. Длины известных граней возводятся в квадрат, после чего известные стороны перемножаются между друг другом и на два и умножаются на косинус угла между ними. Далее, необходимо сложить квадраты граней и отнять от них второе полученное значение. Из итоговой величины извлекается квадратный корень — это будет третья, неизвестная до этого сторона.

После того как все три грани фигуры известны, осталось воспользоваться уже полюбившейся нам стандартной формулой поиска периметра описываемой фигуры из первого метода.

Периметр треугольника

Треугольник

Периметром треугольника, как в прочем и любой фигуры, называется сумма длин всех сторон. Довольно часто это значение помогает найти площадь или используется для расчета других параметров фигуры.
Формула периметра треугольника выглядит так:

P=a+b+c

Калькулятор нахождения периметра треугольника
Сторона a= Сторона b= Сторона c=
Ответ: Периметр треугольника = 12.000

P=4+6+7=17

Пример расчета периметра треугольника. Пусть дан треугольник со сторонами a = 4см, b = 6 см, c = 7 см. подставим данные в формулу: см

Формула расчета периметра равнобедренного треугольника будет выглядеть так:

P=2a+b

Формула расчета периметра равностороннего треугольника:

P=3a

P=3*5=15

Пример расчета периметра равностороннего треугольника. Когда все стороны фигуры равны, то их можно просто умножить на три. Допустим, дан правильный треугольник со стороной 5 см в таком случае: см

В общем, когда все стороны даны, найти периметр довольно просто. В остальных же ситуациях требуется найти размер недостающей стороны. В прямоугольном треугольнике можно найти третью сторону по теореме Пифагора. К примеру, если известны длины катетов, то можно найти гипотенузу по формуле: ” />

Читайте также:
Признаки выпуклости четырехугольника, его свойства и рисунки, почему выпуклый, диагонали выпуклого четырехугольника,свойство диагоналей,неправильный четырёхугольник,выпуклые 4

Рассмотрим пример расчета периметра равнобедренного треугольника при условии, что мы знаем длину катетов в прямоугольном равнобедренном треугольнике.
Дан треугольник с катетами a = b =5 см. Найти периметр. Для начала найдем недостающую сторону с . =sqrt=sqrt=7″ />см
Теперь посчитаем периметр: см
Периметр прямоугольного равнобедренного треугольника будет равен 17 см.

В случае, когда известна гипотенуза и длина одного катета, можно найти недостающий по формуле: ” />
Если в прямом треугольнике известна гипотенуза и один из острых углов, то недостающая сторона находится по формуле:

Если эти выражения подставить в формулу периметра, можно получить:

+ c*cos+c=c*(sin+cos+1)” />

Задача: Дан прямоугольный треугольник с гипотенузой с = 7 см и острым углом α = 30°. Найти периметр треугольника. Подставляем значения в формулу.
+>/2+1)=7(/2+1)=16,45″ />см
Периметр треугольника равен 16,45 см

Зная одну сторону и противолежащий ей катет можно вычислить две недостающие.

К примеру, дан треугольник, в котором сторона a = 5 см, а противолежащий ей угол α =45°. Тогда сторону b можно найти через формулу:>” />
Сторону с найдем так: >” />
Периметр, с применением таких формул, будет рассчитываться следующим образом: > +a/> =a(1+1/> +1/>)” />
Теперь произведем расчеты по уже известной формуле: см

Как находить периметр треугольника

В статье на примерах покажем, как находить периметр треугольника. Рассмотрим все основные случая, как найти периметры треугольников, даже когда не все значения сторон известны.

Треугольником называется простая геометрическая фигура состоящая из трех прямых линий пересекающих друг друга. В которой точки пересечения прямых, называются вершинами, а прямые линии соединяющие их, называются сторонами.
Периметром треугольника называется сумма длин сторон треугольника. От того сколько мы имеем изначальных данных, для вычисления периметра треугольника, зависит каким из вариантов мы воспользуемся, для его вычисления.
Первый вариант
Если мы знаем длины сторон n, y и z треугольника, то периметр мы можем определить с помощью следующей формулы: в которой P – это периметр, n, y, z- стороны треугольника

периметр прямоугольника формула

Рассмотрим на примере:
Дан треугольник ksv стороны которого k = 10см, s = 10 см, v =8см. найти его периметр.
Пользуясь формулой получаем 10 + 10 + 8 = 28.
Ответ: Р = 28см.

Читайте также:
Как подготовиться к ЕГЭ по истории: советы для самостоятельной подготовки

Для равностороннего треугольника находим периметр так – длина одной стороны умноженная на три. формула выглядит следующим образом :
Р = 3n
Рассмотрим на примере:
Дан треугольник ksv стороны которого k = 10см, s = 10 см, v =10см. найти его периметр.
Пользуясь формулой получаем 10 * 3 = 30
Ответ: Р = 30см.

Для равнобедренного треугольника находим периметр так – к длине одной боковой стороны умноженной на два, прибавляем сторону основания
Равнобедренным треугольником называется простейший многоугольник у которого две боковые стороны равны, а третья сторона называется основанием.

Рассмотрим на примере:
Дан треугольник ksv стороны которого k = 10см, s = 10 см, v =7см. найти его периметр.
Пользуясь формулой получаем 2 * 10 + 7 = 27.
Ответ: Р = 27см.
Второй вариант
Когда нам не известна длина одной стороны, но мы знаем величины длины двух других сторон и угла между ними, а периметр треугольника возможно найти только после того как мы узнаем длину третьей стороны. В этом случае неизвестная сторона будет равна корню квадратному из выражения в2 + с2 – 2 ∙ в ∙ с ∙ cosβ

P = n + y + √ ( n2 + y2 – 2 ∙ n ∙ y ∙ cos α )
n, y – длины сторон
α – размер угла между известными нам сторонами

Третий вариант
Когда нам не известны стороны n и y, но мы знаем длину стороны z и величины прилегающих к ней. Периметр треугольника в этом случае мы сможем найти только тогда когда узнаем длины двух неизвестных нам сторон, определим их с помощью теоремы синусов, с помощью формулы

P = z + sinα ∙ z / (sin ( 180°-α – β )) + sinβ ∙ z / (sin ( 180°-α – β ))
z – длина известной нам стороны
α, β – размеры известных нам углов

Четвертый вариант
Так же можно найти периметр треугольника по радиусу вписанному в его окружность и площади треугольника. Определяем периметр по формуле

P = 2S / r
S – площадь треугольника
r – радиус вписанной в него окружности

Мы с вами разобрали четыре разных варианта, как можно найти периметр треугольника.
Находить периметр треугольника в принципе не сложно. Если у вас появились какие то вопросы по статье, дополнения, то обязательно пишите их в комментариях.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Читайте также:
МОУ СОШ: как расшифровывается аббревиатура,школа расшифровка и что она означает

Как найти периметр треугольника я в принципе знала и не раз этой формулой пользовалась, но чтобы по радиусу вписанной окружности – даже не догадывалась что такое бывает.

Я пару раз пыталась по радиусу и ничего у меня не получилось, скорее всего что то не так мерила. Я вручную пробовала, не в задачке в смысле.

Не вижу разницы, нарисованы то все равнобедренные треугольники, не путайте нас!

Смешная статья конечно, разве у кого нибудь бывают проблемы с вычислением периметра треугольника?! Мне кажется что это самая легкая геометрическая фигура.

Треугольник. Формулы и свойства треугольников.

Определение. Треугольник – фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки – его сторонами.

Типы треугольников

По величине углов

Остроугольный треугольник

Тупоугольный треугольник

Прямоугольный треугольник

По числу равных сторон

Остроугольный треугольник

равнобедренный треугольник

правильный треугольник

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Вершины и углы треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 – 2 bc · cos α

b 2 = a 2 + c 2 – 2 ac · cos β

c 2 = a 2 + b 2 – 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Медианы треугольника

Определение. Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 – a 2

mb = 1 2 √ 2 a 2 +2 c 2 – b 2

mc = 1 2 √ 2 a 2 +2 b 2 – c 2

Биссектрисы треугольника

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектрисы треугольника пересекаются в одной точке, равноудаленной от трех сторон треугольника, – центре вписанной окружности.

Читайте также:
Особенности универсальных учебных действий в младшем школьном возрасте: развитие личности

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p – a ) b + c

lb = 2√ acp ( p – b ) a + c

lc = 2√ abp ( p – c ) a + b

где p = a + b + c 2 – полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Высоты треугольника

Определение. Высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на прямую содержащую противоположную сторону.

  • внутри треугольника – для остроугольного треугольника;
  • совпадать с его стороной – для катета прямоугольного треугольника;
  • проходить вне треугольника – для острых углов тупоугольного треугольника.

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.

Формулы радиуса окружности вписанной в треугольник

r = ( a + b – c )( b + c – a )( c + a – b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Окружность описанная вокруг треугольника

Определение. Окружность называется описанной вокруг треугольника, если она содержит все вершины треугльника.

Свойства окружности описанной вокруг треугольника

Центр описанной вокруг треугольника окружности лежит на пересечении серединных перпендикуляров к его сторонам.

Центр описанной окружности лежит внутри остроугольного треугольника, снаружи тупоугольнго треугольника, на середине гипотенузы прямоугольного треугольника.

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

Средняя линия

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

3. Средняя линия отсекает треугольник, подобный данному, площадь которого равна четвёрти площади исходного треугольника

4. При пересечении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.

Признаки. Если отрезок параллелен одной из сторон треугольника и соединяет середину стороны треугольника с точкой, лежащей на другой стороне треугольника, то этот отрезок – средняя линия.

Периметр треугольника

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

площадь треугольника

Формула площади треугольника по стороне и высоте
Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты

Читайте также:
Историческое сочинение, как писать, эссе по истории период 1019-1054 гг,егэ,ярослав мудрый.

Формула Герона

Формула площади треугольника по двум сторонам и углу между ними
Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

S = a · b · с
4R

Формула площади треугольника по трем сторонам и радиусу вписанной окружности
Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

Равенство треугольников

Свойства. У равных треугольников равны и их соответствующие элементы. (В равных треугольниках против равных сторон лежат равные углы, против равных углов лежат равные стороны)

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Третий признак равенства треугольников — по трем сторонам

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Подобие треугольников

Подобие треугольников

Определение. Подобные треугольники – треугольники соответствующие углы которых равны, а сходственные стороны пропорциональны.

∆АВС ~ ∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k – коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Второй признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Третий признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого, а углы, между этими сторонами, равны, то такие треугольники подобны.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: