Органоиды клетки. Строение и функции.
Органоиды клетки и их наличие зависит от типа клетки. Современная биология делит все клетки (или живые организмы) на два типа: прокариоты и эукариоты. Прокариоты – это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома – молекула ДНК (иногда РНК).
Эукариотические клетки имеют ядро, в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды. К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).
Строение ограноидов эукариотов.
Цитоплазма
Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.
- Выполняет транспортную функцию.
- Регулирует скорость протекания обменных биохимических процессов.
- Обеспечивает взаимодействие органоидов.
Рибосомы
Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.
Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.
Митохондрии
Органоиды, имеющие самую разнообразную форму – от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.
- Ферменты на мембранах обеспечивают синтез АТФ (аденозинтрифосфорной кислоты).
- Энергетическая функция. Митохондрии обеспечивают поставки энергии в клетку за счет высвобождения ее при распаде АТФ.
Эндоплазматическая сеть (ЭПС)
Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.
- Обеспечивает процессы по синтезу питательных веществ (белков, жиров, углеводов).
- На гранулированной ЭПС синтезируются белки, на гладкой – жиры и углеводы.
- Обеспечивает циркуляцию и доставку питательных веществ внутри клетки.
Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:
Лейкопласты
Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.
Являются дополнительным резервуаром для хранения питательных веществ.
Хлоропласты
Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.
Преобразуют органические вещества из неорганических, используя энергию солнца.
Хромопласты
Органоиды, от желтого до бурого цвета, в которых накапливается каротин.
Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.
Лизосомы
Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри – комплекс ферментов.
Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.
Комплекс Гольджи
Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.
- Образует лизосомы.
- Собирает и выводит синтезируемые в ЭПС органические вещества.
Клеточный центр
Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей – двух маленьких телец.
Выполняет важную функцию для деления клетки.
Клеточные включения
Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.
Запасные питательные вещества, которые используются для жизнедеятельности клетки.
Органоиды движения
Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).
Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.
Ядро клетки является главным и самым сложным органоидом клетки, поэтому его мы рассмотрим отдельно.
Сравнение растительной и животной клетки
Биология
Сравнение растительной и животной клетки очень важно для понимания общего принципа устройства клеток живых организмов. Сравните строение растительной и животной клетки, для этого ниже приведена таблица, в которую сведена сравнительная характеристика растительной и животной клетки. Кроме того, мы показываем различие между клетками не только растений и животных, но и грибов и бактерий.
Клетки растений, животных, грибов и бактерий
Для всех организмов существует два вида клеток. Это прокариотические и эукариотические клетки. Они имеют существенные различия. Строение эукариотической клетки имеет ряд отличий от прокариотической. Поэтому в животном мире выделили два надцарства, которые назвали прокариотами и эукариотами.
Основное отличие
Строение эукариотической клетки отличается тем, что она имеет ядро, в котором находятся хромосомы, состоящие из ДНК. ДНК прокариотической клетки не организованы в хромосомы и не имеют ядра. Поэтому прокариотические организмы назвали доядерными, а эукариотические ― ядерными. Отличаются клетки и размерами. Эукариотические клетки намного больше, чем прокариотические. Доядерными организмами являются бактерии.
К эукариотам принадлежат растения, грибы и животные. Следовательно, особенности строения эукариотической клетки состоят в наличии ядра. Конечно, есть и другие отличия между клетками, но они несущественны.
Строение и функции эукариотической клетки
Клетка ядерных организмов имеет множество органелл, отсутствующих у прокариотов. Клетка растений, грибов и животных состоит из цитоплазматической мембраны, защищающей клетку и придающей ей форму, и цитоплазмы. Цитоплазма объединяет все компоненты клетки, участвует во всех обменных процессах и служит скелетом клетки, благодаря наличию микротрубочек. В цитоплазме располагаются одномембранные, двумембранные и немембранные органеллы.
Одномембранные органоиды
Одномембранными органоидами называют эндоплазматическую сеть, аппарат Гольджи, лизосомы и вакуоли из-за того, что они покрыты одной мембраной. Эндоплазматическая сеть бывает гладкой и шероховатой, или гранулярной. Гладкая эндоплазматическая сетка образовывает углеводы и липиды. Шероховатая сетка синтезирует белки. Этим занимаются рибосомы, находящиеся на ней. Аппарат Гольджи сохраняет и транспортирует питательные вещества. Лизосомы обеспечивают расщепление белков, жиров и углеводов.
Двумембранные органоиды
Двумембранные органоиды имеют две мембраны: наружную и внутреннюю. К ним относят митохондрии и пластиды. Митохондрии участвуют в дыхании клетки и снабжают клетку энергией. Благодаря пластидам происходит фотосинтез.
Немембранные органоиды
Немембранными органеллами являются рибосомы, клеточный центр, реснички и жгутики. Рибосомы осуществляют синтез белка. Клеточный центр участвует в делении клеток. Реснички и жгутики ― органеллы, служащие для движения.
Отличия клеток растений, грибов и животных
Несмотря на единство общего плана, строение эукариотической клетки разных царств организмов имеет некоторые отличия. Растительные клетки не содержат лизосом и клеточного центра. Клетки животных и грибов характеризуются отсутствием пластид и вакуолей. Клеточная стенка грибов содержит хинин, а растений ― целлюлозу. В животных клеточной стенки нет, а в состав мембраны входит гликокаликс. Строение эукариотической клетки имеет отличие и в резервных питательных углеводах. В растительных клетках запасается крахмал, а в клетках грибов и животных ― гликоген.
Дополнительные отличия
Различается не только строение эукариотической клетки и прокариотической, но и способы их размножения. Количество бактерий увеличивается в результате образования перетяжки или почкования. Размножение эукариотических клеток происходит путем митоза. Многие процессы, свойственные эукариотической клетке (фагоцитоз, пиноцитоз и циклоз), у прокариотов не наблюдаются. Для нормальной работы клеткам грибов, растений и животных необходима аскорбиновая кислота. Бактерии в ней не нуждаются.
В таблице сравниваются клетки бактерий, растений и животных по морфологическим признакам.
Таблица «Сравнение растительной и животной клетки»
Клеточная структура |
Функция | Бакт. | Раст. | Живот. | Грибы |
Ядро | Хранение наследственной информации, синтез РНК | Нет | Есть | Есть | Есть |
Клеточная мембрана |
Выполняет барьерную, транспортную, матричную, механическую, рецепторную, энергетическую, ферментативную и маркировочную функции | Есть | Есть | Есть | Есть |
Капсула | Предохраняет бактерии от повреждений и высыхания. Создаёт дополнительный осмотический барьер и является источником резервных веществ. Препятствует фагоцитозу бактерий | Есть | Нет | Нет | Нет |
Клеточная стенка |
Полисахаридная оболочка над клеточной мембраной, через неё происходит регуляция воды и газов в клетке. Не проницаема даже для мелких молекул. Не препятствует диффузному движению | Есть | Есть | Нет | Есть |
Контакты между клетками |
Связывание между собой клеток ткани. Транспорт веществ между клетками. | Нет | Плазмод-есмы | Десмос-омы | Септы |
Хромосомы | Нуклеопротеиновый комплекс, содержащий ДНК, а также гистоны и гистоноподобные белки | Нуклеоид | Есть | Есть | Есть |
Плазмиды | Хранение геномной информации, которая кодирует ферменты, которые разрушают антибиотики, тем самым позволяют избегать их губительного воздействия | Есть | Нет | Нет | Нет |
Цитоплазма | Содержит в себе органеллы клетки и равномерно распределяет питательные вещества по клетке. | Есть | Есть | Есть | Есть |
Митохондрии | Органоиды, принимающие участие в превращении энергии в клетке. Имеют внутренние мембраны, на которых осуществляется синтез АТФ | Нет | Есть | Есть | Есть |
Аппарат Гольджи |
Производит синтез сложных белков, полисахаридов, их накопление и секрецию | Нет | Есть | Есть | Есть |
Эндоплазматич. ретикулум | Выполняет синтез и обеспечивает транспорт белков и липидов | Нет | Есть | Есть | Есть |
Рибосомы | Органоиды, состоящие из двух субъединиц, осуществляют синтез белка (трансляцию). | Есть | Есть | Есть | Есть |
Центриоль | Во время деления клетки образует веретено деления | Нет | Нет | Есть | Нет |
Пластиды | Двухмембранные структуры, в которых происходят реакции фотосинтеза (хлоропласты), происходит накопление крахмала (лейкопласты), придают окраску плодам и цветкам (хромопласты) | Нет | Есть | Нет | Нет |
Лизосомы | Производят расщепление различных органических веществ | Нет | Есть | Есть | Есть |
Пероксисомы | Производят синтез и транспорт белков и липидов | Нет | Есть | Есть | Есть |
Вакуоли | Накапливают клеточный сок. Для перемещения бактериальных клеток в толще воды. Поддерживает напряжённое состояние оболочек клеток | Нет | Есть | Нет | Нет |
Цитоскелет | Опорно-двигательная система клетки. Изменения в белках цитоскелета приводят к изменению формы клетки и расположению в ней органоидов. | Бывает | Есть | Есть | Есть |
Мезосомы | Артефакты, возникающие во время подготовки образцов для электронной микроскопии | Есть | Нет | Нет | Нет |
Пили | Служат для прикрепления бактериальной клетки к различным поверхностям | Есть | Нет | Нет | Нет |
Органеллы для перемещения | Служат для перемещения в пространстве (реснички, жгутики и др.) | Есть | Есть | Есть | Нет |
Как написать студенческую работу, чтобы её 100% приняли?
Возникают ситуации, когда очень сложно сделать работу, когда совершенно не понятно каков должен быть конечный результат. В таких случаях лучше не тратить лишние время и нервы, а обращаться к знающим людям.
Особенности строения и основные органеллы растительных клеток
Растения уникальные среди эукариот организмы, чьи клетки имеют дополнительную оболочку, поверх плазматической мембраны и органеллы, которые помогают производить свою собственную пищу. Хлорофилл придает растениям зеленый окрас и позволяет использовать солнечный свет в процессе фотосинтеза для преобразования воды и углекислого газа в сахара и углеводы — вещества, используемые клеткой в качестве источника энергии.
Строение клетки растения
В природе существуют как одноклеточные растения, так и многоклеточные. Например, в водной среде можно встретить одноклеточные водоросли, клетки которых имеют все функции, присущие живому организму.
Многоклеточная особь – это не просто набор клеток, а единый организм, состоящий из различных тканей и органов, которые взаимодействуют между собой.
Строение растительной клетки у всех растений схоже, их клетки состоят из одних и тех же компонентов. Рассмотрим состав растительной клетки:
- оболочка (включает в себя цитоплазматическую мембрану и клеточную стенку из целлюлозы);
- цитоплазма, с расположенными в ней митохондриями, хлоропластами, вакуолями и другими органоидами;
- ядро, состоящие из ядерной оболочки, ядерного сока, ядрышка, хроматина.
Рис. 1. Строение клетки растения.
В отличие от животной растительная клетка имеет особую целлюлозную оболочку, вакуоли с клеточным соком и пластиды.
Изучение строения и функций растительной клетки показало, что:
ТОП-4 статьикоторые читают вместе с этой
- самой значительной частью в организме является ядро, которое отвечает за все происходящие процессы. Оно содержит наследственную информацию, которая передаётся из поколения в поколение. От цитоплазмы отделяет ядро ядерная оболочка;
- бесцветное вязкое вещество, которое наполняет клетку, называется цитоплазмой. Именно в ней находятся все органоиды;
- под клеточной стенкой находится мембрана (тонопласт), которая отвечает за обмен веществ с окружающей средой. Это тоненькая плёнка, отделяющая оболочку от цитоплазмы;
- клеточная стенка достаточно прочная, так как в её состав входит целлюлоза. Поэтому функциями стенки является защита и поддержание формы;
- важными составными компонентами являются пластиды. Они могут быть цветными или бесцветными. Так, например, хлоропласты имеют зелёный цвет, именно в них происходит процесс фотосинтеза;
- внутренняя полость, заполненная соком, называется вакуолью. Размер её зависит от возраста организма: чем он старше, тем больше вакуоль. В состав сока входит водный раствор минеральных солей и органических веществ. Он содержит различные сахара, ферменты, минеральные кислоты и соли, белки и пигменты;
Рис. 2. Изменения размера вакуоли при росте растения.
- митохондрии способны передвигаться вместе с цитоплазмой, как и пластиды. Именно здесь происходит процесс дыхания и образования АТФ;
- аппарат Гольджи может иметь различные формы (диски, палочки, зёрнышки). Его роль – накопление и выведение различных веществ;
- рибосомысинтезируют белок. Находятся они в цитоплазме, внутри митохондрий и пластид.
Клеточное строение растений учёные открыли ещё в XVII веке. Клетки апельсиновой мякоти видны невооружённым глазом, но большинство клеток растений можно рассмотреть лишь под микроскопом.
Рис. 3. Строение аппарата Гольджи.
Отличие от животной клетки
Строение при помощи клеток свойственно всем живым существам — как растениям, так и животным. Эукариоты тех и других имеют как сходства, так и различия.
Сходства
Клеткам представителей флоры и фауны свойственно достаточно много общих компонентов и характеристик. Так, все клетки способны развиваться, размножаться и саморегулироваться.
Ниже представлены основные общие черты клеточного строения живых существ:
- одинаковые органоиды: ядро, внутреннее содержимое, эндоплазматический ретикулум, плазмалемма, митохондрии, комплекс Гольджи;
- практически одинаково протекают химические процессы;
- все клеточные компоненты состоят из схожих химических элементов;
- схожие способы деления и передачи наследственной информации.
Помимо обычных органоидов состав клеток растений и животных содержит в себе так называемые включения. Располагаясь в различных органеллах, эти включения могут время от времени исчезать и появляться вновь. Они являются продуктами обмена веществ, протекающего внутри клетки, и представляют собой различные белки, жиры и углеводы.
Отличия
При схожем клеточном составе строение растений и животных все же имеет принципиальные отличия.
В таблице приведены главные различия между двумя царствами живой природы.
Сравнительная таблица клеток представителей флоры и фауны
Свойства и основные компоненты
Растения
Животные
Округлой формы, несет в себе наследственную информацию
Большинство компонентов идентично
Можно сделать вывод, что основные отличия клеточного строения представителей флоры и фауны исходят от их образа жизни. Растения не способны к самостоятельному движению, поэтому они сами синтезируют питательные вещества. В то время как животные добывают себе пищу из окружающей среды.
Органоиды клетки и их функции описательная таблица
В таблице собрана важная информация об органоидах клетки. Она поможет школьнику составить план рассказа по рисунку.
Органоид | Описание | Функция | Особенности |
Клеточная стенка | Покрывает цитоплазматическую мембрану, состав – в основном целлюлоза. | Поддержание прочности, механическая защита, создание формы клетки, поглощение и обмен различных ионов, транспорт веществ. | Характерна для растительных клеток (отсутствует в животной клетке). |
Цитоплазма | Внутренняя среда клетки. Включает полужидкую среду, расположенные в ней органоиды и нерастворимые включения. | Объединение и взаимодействие всех структур (органоидов). | Возможно изменение агрегатного состояния. |
Ядро | Самый крупный органоид. Форма шаровидная или яйцевидная. В нем расположены хроматиды (молекулы ДНК). Ядро покрыто двумембранной ядерной оболочкой. | Хранение и передача наследственной информации. | Двумембранный органоид. |
Ядрышко | Сферическая форма, d – 1-3 мкм. Являются основными носителями РНК в ядре. | В них синтезируются рРНК и субъединицы рибосом. | Ядро содержит 1-2 ядрышка. |
Вакуоль | Резервуар с аминокислотами и минеральными солями. | Регулировка осмотического давления, хранение запасных веществ, аутофагия (самопереваривание внутриклеточного мусора). | Чем старше клетка, тем большее пространство в клетке занимает вакуоль. |
Пластиды | 3 вида: хлоропласты, хромопласты и лейкопласты. | Обеспечивает автотрофный тип питания, синтез органических веществ из неорганических. | Иногда могут переходить из одного вида пластид в другой. |
Ядерная оболочка | Содержит две мембраны. К внешней прикрепляются рибосомы, в некоторых местах происходит соединение с ЭПР. Пронизана порами (обмен между ядром и цитоплазмой). | Разделяет цитоплазму от внутреннего содержимого ядра. | Двумембранный органоид. |
Цитоплазма строение и функции
Цитоплазма, отделённая от окружающей среды|среды плазмолеммой, включает в себя основное вещество (матрикс и гиалоплазма), находящиеся в ней обязательные клеточные компоненты – органеллы, а также различные непостоянные структуры – включения.
В электронном микроскопе матрикс цитоплазмы имеет вид гомогенного или тонкозернистого вещества с низкой электронной плотностью. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Гиалоплазма является сложной коллоидной системой, включающей в себя различные биополимеры. Основное вещество цитоплазмы образует истинную внутреннюю среду|среду клетки, которая объединяет всё|все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом.
В электронном микроскопе матрикс цитоплазмы имеет вид гомогенного или тонкозернистого вещества с низкой электронной плотностью. Включает микротрабекулярную сеть, образованную тонкими фибриллами толщиной 2-3 нм и пронизывающей всю цитоплазму. Основное вещество цитоплазмы следует рассматривать так же, как сложную коллоидную систему, способную переходить из жидкого состояния в гелеобразное.
— объединяет всё|все клеточные структуры и обеспечивает их взаимодействие друг с другом.
— является вместилищем для ферментов и АТФ.
— откладываются запасные|запасные продукты.
— происходят различные реакции (синтез белка|белка).
Включениями называют непостоянные компоненты цитоплазмы, которые служат запасными|запасными питательными веществами, продуктами, подлежащими выведению из клетки, балластными веществами.
Органеллы — это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции.
1) Рибосомы — мелкие тельца|тельца грибовидной формы, в которых идёт синтез белка|белка. Они состоят из рибосомальной РНК и белка|белка, образующего большую|большую и малую|малую субъединицы.
2) Цитоскелет — опорно-двигательная система клетки, включающая немембранные образования, выполняющие как каркасную, так и двигательную функции в клетке. Эти нитчатые или фибриллярные могут быстро возникать и так же быстро исчезать. К этой системе относятся фибриллярные структуры(5-7нм) и микротрубочки (состоят из 13 субъединиц).
Лучшие статьи : Самые популярные породы кошек: топ 10
3) Клеточный центр состоит из центриолей (длинна 150 нм, диаметр 300-500 нм), окружённых центросферами.
Центриоли состоят из 9 триплетов микротрубочек. Функции:
— образование нитей митотического веретена|веретёна деления.
– Обеспечение расхождения сестринских хроматид в анафазе митоза.
4) Реснички (Ресничка представляет собой тонкий цилиндрический вырост цитоплазмы с постоянным диаметром 300 нм. Этот вырост от основания до самой|самой его верхушки покрыт плазматической мембраной) и жгутики ( длинна 150 мкм) — это специальные органеллы движения, встречающиеся в некоторых клетках различных организмов.
Цитоплазма строение и функции
Что такое цитоплазма? Каково её строение и состав? Какие функции она выполняет? В этой статье мы подробно ответим на все эти вопросы. Кроме того, мы рассмотрим структурные особенности цитоплазмы и её свойства, а также поговорим о делении коллоидного раствора, строении клеточных мембран и важнейших клеточных органоидах.
Структурные единицы всех тканей и органов|органов клетки. Два типа их структурной организации
Известно, что клетки образуют ткани всех растений и животных. Эти структурные единицы всего живого могут различаться по форме, размерам и даже по внутреннему строению. Но в то же время они имеют схожие принципы в процессах жизнедеятельности, в том числе в обмене веществ, росте и развитии, раздражимости и изменчивости. Самые простейшие формы жизни состоят из единственной клетки и размножаются делением. Учёными было выделено два типа организации клеточной структуры:
Строение растительных клеток
Схема строения клетки растений
Далее приведен список и краткая характеристика основных органелл клеток растений. Для более детальной информации переходите по ссылкам ниже:
Строение клетки
Элементарной и функциональной единицей всего живого на нашей планете является клетка. В данной статье Вы подробно узнаете об её строении, функциях органоидов, а также найдёте ответ на вопрос: «Чем отличается строение клеток растений и животных?».
Строение клетки
Наука, которая изучает строение клетки и её функции, называется цитологией. Несмотря на свои незначительные размеры, данные части организма имеют сложную структуру. Внутри находится полужидкое вещество, именуемое цитоплазмой. Здесь проходят все жизненно важные процессы и располагаются составляющие части – органоиды. Узнать об их особенностях Вы сможете далее.
Самой важной частью является ядро. От цитоплазмы его отделяет оболочка, которая состоит из двух мембран. В них имеются поры, чтобы вещества могли попадать из ядра в цитоплазму и наоборот. Внутри находится ядерный сок (кариоплазма), в котором располагается ядрышко и хроматин.
Рис. 1. Строение ядра.
Именно ядро управляет жизнедеятельностью клетки и хранит генетическую информацию.
Основу хроматина составляет ДНК, именно в ДНК заключена наследственная информация. Основная функция ядрышек – образование рибосомных РНК и субъединиц будущих рибосом.
Рибосомы
Располагаются на поверхности эндоплазматической сети, при этом делая её поверхность шероховатой. Многие рибосомы свободно располагаются в цитоплазме. К их функциям относится биосинтез белка.
которые читают вместе с этой
Эндоплазматическая сеть
ЭПС может иметь шероховатую либо гладкую поверхность. Шероховатая поверхность образуется за счёт наличия рибосом на ней.
К функциям ЭПС относится синтез белка и других веществ, их последующая транспортировка. Часть образованных белков, углеводов и жиров по каналам эндоплазматической сети поступает в особые ёмкости для хранения. Называются эти полости аппаратом Гольджи, представлены они в виде стопок «цистерн», которые отделены от цитоплазмы мембраной.
Аппарат Гольджи
Чаще всего располагается вблизи ядра. В данном комплексе хранятся вещества, которые были синтезированы самой клеткой для потребностей всего организма. При необходимости на комплексе образуются везикулы. Это особые пузырьки с веществами, которые транспортируются к поверхности клетки и выделяются за ее пределы.К функциям аппарата Гольджи относятся модификация белков и образование лизосом.
Лизосомы содержат пищеварительные ферменты, которые заключены с помощью мембраны в пузырьки и циркулируют в цитоплазме. Лизосомы служат для внутриклеточного пищеварения. При необходимости могут переварить всю клетку (автолиз).
Митохондрии
Эти органоиды покрыты двойной мембраной:
Функциями митохондрий является дыхание. Митохондрии называют энергетическими станциями клетки, так как внутри них происходит извлечение энергии из питательных веществ. На кристах находятся ферменты, с помощью которых выделяемая энергия запасается в молекулах АТФ. Это вещество является универсальным аккумулятором энергии.
Данные органоиды содержат собственную молекулу ДНК, рибосомы и способны к самостоятельному размножению. Этот факт навёл учёных на мысль, что изначально митохондрии были бактериями и существовали самостоятельно. Спустя время они поселились внутри клеток других организмов. И, спустя много лет, стали органеллами, без которых не обходится ни одна эукариотическая клетка.
Плазматическая мембрана
Цитоплазматическая мембрана отделяет и защищает внутреннее содержимое от внешней среды. Она поддерживает форму, обеспечивает взаимосвязь с другими клетками, обеспечивает процесс обмена веществ. Состоит мембрана из двойного слоя фосфолипидов, в который включены молекулы белков. На поверхности клеточной мембраны у растений, грибов и бактерий расположена клеточная стенка.
Сравнительная характеристика клеток растений и животных
Растительная и животная клетка отличаются друг от друга своим строением, размерами и формами. А именно:
- у растительного организма есть клеточная стенка из целлюлозы, а у животной клетки на поверхности клеточной мембраны тонкий слой из углеводов – гликокаликс;
- у растительной клетки есть пластиды и вакуоли с клеточным соком;
- животная клетка имеет центриоли в клеточном центре, которые имеют значение в процессе деления, у растений же центриоли сохраняются только у водорослей;
- наружная мембрана животного организма гибкая и может приобретать различные формы.
Обобщить знания об основных частях клетки поможет следующая таблица:
Таблица «Строение клетки»
Органоид
Характеристика
Функции
Имеет ядерную оболочку, внутри которой содержится ядерный сок с ядрышком и хроматином.
Хранение наследственной информации в ДНК и ее считывание в процессе транскрипции и редупликации.
Состоит из двух слоёв липидов, которые пронизаны белками.
Ограничивает содержимое клетки, обеспечивает межклеточные обменные процессы, выполняет рецепторные функции.
Полужидкая часть цитоплазмы, содержащая липиды, белки, полисахариды и пр.
Объединение и взаимодействие органелл.
Система каналов и полостей, различают гладкую и шероховатую ЭПС с рибосомами
Синтез и транспортировка белков, липидов, стероидов.
Состоит из мембранных мешочков – цистерн
Хранение веществ и их транспорт за пределы клетки. Образует лизосомы.
Состоят из двух субъединиц, в составе имеют белок и РНК.
Образуют белок в процессе трансляции
В виде мешочка, внутри которого находятся гидролитические ферменты.
Переваривание питательных веществ и отмерших частей клетки.
Двумембранные органоиды, содержат кристы и многочисленные ферменты.
Образование АТФ в процессе дыхания.
Двумембранные органоиды. Представлены тремя видами: хлоропласты, лейкопласты, хромопласты.
Фотосинтез и запас веществ.
Мешочки с клеточным соком.
Регулируют тургорное давление и сохраняют питательные вещества.
Состоят из микротрубочек, объединенных в 9 триплетов.
Участвует в процессе деления, образуя веретено деления.
Что мы узнали?
Живой организм состоит из клеток, которые имеют достаточно сложное строение. Снаружи клетка покрыта плазматической мембраной, которая защищает внутреннее содержимое клетки и обеспечивает связь с окружающей средой. У клеток растений, грибов и животных есть ядро, которое регулирует все происходящие процессы и хранит наследственную информацию. Цитоплазма содержит различные органоиды, каждый из которых имеет свои функции и особенности строения.
Функции и строение органоидов клетки
Любой человек знает ещё со школы, что все живые организмы, как растения, так и животные, состоят из клеток. Но вот из чего состоят они сами это известно отнюдь не каждому, а если всё-таки и известно, то не всегда хорошо. В данной статье мы рассмотрим строение растительных и животных клеток, разберёмся в их отличиях и сходствах.
Но сначала давайте разберёмся, что же вообще такое органоид.
- Растительные органеллы
- Ядро и цитоплазма
- Мембранная оболочка
- Вакуоли
- Аппарат, лизосомы и митохондрии
- Хлоропласты, лейкопласты и хромопласты
- Эндоплазматическая сеть
- Органоиды животной клетки
Органоид это орган клетки, осуществляющий какую-либо свою, индивидуальную функцию в ней, обеспечивая при этом её жизнеспособность, ведь без исключения каждый процесс, происходящий в системе, очень для этой системы важен. А все органоиды составляют систему. Органоиды ещё называют органеллами.
Это интересно: вакуоль и её особенности.
Растительные органеллы
Итак, рассмотрим, какие же органоиды имеются в растениях и какие именно функции они выполняют.
Ядро и цитоплазма
Ядро (ядерный аппарат) один из самых важных органоидов. Оно отвечает за передачу наследственной информации ДНК (дезоксирибонуклеиновую кислоту). Ядро органелла округлой формы. У него есть подобие скелета ядерный матрикс. Именно матрикс отвечает за морфологию ядра, его форму и размеры. Внутри ядра содержится ядерный сок, или кариоплазма. Она представляет собой достаточно вязкую, густую жидкость, в которой находятся маленькое ядрышко, формирующее белки и ДНК, а также хроматин, который реализует накопленный генетический материал.
Сам ядерный аппарат вместе с другими органоидами находится в цитоплазме жидкой среде. Цитоплазма состоит из белков, углеводов, нуклеиновых кислот и прочих веществ, являющихся результатами производства других органоидов. Главная функция цитоплазмы передача веществ между органоидами для поддержания жизни. Так как цитоплазма это жидкость, то внутри клетки происходит незначительное движение органелл.
Это интересно: органические вещества клетки, что входит в ее состав?
Мембранная оболочка
Мембранная оболочка, или плазмалемма, выполняет защитную функцию, оберегая органеллы от каких-либо повреждений. Мембранная оболочка представляет собой плёнку. Она не сплошная оболочка имеет поры, через которые одни вещества входят в цитоплазму, а другие выходят. Складки и выросты мембраны обеспечивают прочное соединение клеток между собой. Защищена оболочка клеточной стенкой, это наружный скелет, придающий клетке особую форму.
Вакуоли
Вакуоли это специальные резервуары для хранения клеточного сока. Он содержит в себе питательные вещества и продукты жизнедеятельности. Вакуоли накапливают его в процессе всей жизни клетки, подобные запасы необходимы в случае повреждений (редко) или же нехватки питательных веществ.
Аппарат, лизосомы и митохондрии
- Аппарат, или комплекс Гольджи, это органелла, предназначенная для выведения побочных, ненужных веществ за пределы мембранной оболочки.
- Лизосома органоид, окружённый специальной защитной мембраной. Внутри лизосомы всегда поддерживается кислотная среда. В её функции входит внутриклеточное переваривание макромолекул, превращение их в полезные вещества.
- Митохондрии своеобразные энергостанции, имеют сферическую или эллипсоидную форму. Они обеспечивают клетку энергией. Процесс, происходящий в митохондриях, иногда называют внутриклеточным дыханием. Эти органеллы, окисляя органические соединения, образуют АТФ (аденозинтрифосфат) универсальный источник энергии для органоидов.
Хлоропласты, лейкопласты и хромопласты
Пластиды двумембранные органоиды клетки, делящиеся на три вида хлоропласты, лейкопласты и хромопласты:
- Хлоропласты придают растениям зелёный цвет, они имеют округлую форму и содержат особое вещество пигмент хлорофилл, участвующий в процессе фотосинтеза.
- Лейкопласты органеллы прозрачного цвета, отвечающие за переработку глюкозы в крахмал.
- Хромопластами называют пластиды красного, оранжевого или жёлтого цвета. Они могут развиваться из хлоропластов, когда те теряют хлорофилл и крахмал. Мы можем наблюдать этот процесс, когда желтеют листья или созревают плоды. Хромопласты могут превратиться обратно в хлоропласты при определённых условиях.
Эндоплазматическая сеть
Эндоплазматическая сеть состоит из рибосом и полирибосом. Рибосомы синтезируются в ядрышке, они выполняют функцию биосинтеза белка. Рибосомные комплексы состоят из двух частей большой и малой. Количество рибосом в пространстве цитоплазмы преобладающее.
Полирибосома это множество рибосом, транслирующих одну большую молекулу вещества.
Органоиды животной клетки
Некоторые из органелл полностью совпадают с органоидами растительной, а некоторых растительных вообще нет в животных. Ниже приведена таблица сравнения особенностей строения.
Название органоида клетки | В растительной | В животной |
Ядро и все его составляющие | Имеется, отличий нет | Имеется, отличий нет |
Мембранная оболочка | Имеется, защищена клеточной стенкой снаружи | Имеется, клеточная стенка отсутствует |
Цитоплазма | Имеется, отличий нет | Имеется, отличий нет |
Вакуоли, пластиды | Имеются | Не имеются |
Аппарат Гольджи, лизосомы и митохондрии | Имеются, отличий нет | Имеются, отличий нет |
Пиноцитозный пузырёк | Не имеется | Имеется |
Центриоли | Не имеются | Имеются |
Разберёмся с последними двумя:
- Центриоли не до конца изученная органелла. Её функции до сих пор остаются загадкой, предполагается, что они определяют полюс животной клетки при её делении (размножении).
- Пиноцитозный пузырёк временная органелла, образующаяся во время пиноцитоза, процесса захвата капельки жидкости клеточной поверхностью. Сначала образуется пиноцитозный канал, от которого отходят пиноцитозные пузырьки. Пиноцитозный пузырёк предназначен для транспортировки полученного извне вещества, он движется, гуляет по цитоплазме до последующей переработки.
Можно сказать, что строение животной и растительной клеток различно потому, что растения и животные имеют различные формы жизни. Так, органоиды растительной клетки лучше защищены, потому что растения недвижимы они не могут убежать от опасности. Пластиды имеются в растительной клетке, обеспечивая растению ещё один вид питания фотосинтез. Животным же в силу их особенностей питание посредством переработки солнечного света совершенно ни к чему. А потому и ни одного из трёх видов пластидов в животной клетке быть не может.
Органоиды клетки
Органоиды (органеллы) клетки – специализированные структуры клетки, выполняющие различные жизненно необходимые функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции дыхания, выделения, пищеварения и многие другие.
- Немембранные – рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
- Одномембранные – ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
- Двумембранные – ядро, пластиды, митохондрии
Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо упомянуть о том, без чего вообще не существует клетки – о клеточной мембране. Клеточная мембрана ограничивает клетку от окружающего мира и формирует ее внутреннюю среду.
Клеточная мембрана (оболочка)
Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.
Клеточная мембрана представляет собой билипидный слой (лат. bi – двойной + греч. lipos – жир), который пронизывают молекулы белков.
Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а гидрофильные “головки” смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично – погруженные белки, имеются также поверхностно лежащие белки – периферические.
- Поддержании постоянства структуры мембраны
- Рецепции сигналов из окружающей среды (химического раздражения)
- Транспорте веществ через мембрану
- Ускорении (катализе) реакций, которые ассоциированы с мембраной
Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. “Заякоренные” молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану.
Теперь вы знаете, что гликокаликс – надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны регулируют жизнедеятельность клеток.
Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.
Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее.
- Разделительная (барьерная) – образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
- Поддержание обмена веществ между внешней средой и цитоплазмой
Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности – мочевина – удаляются из клетки во внешнюю среду.
-
Пассивный – часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии или облегченной (с участием белка-переносчика) диффузии.
Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.
Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.
- Фагоцитоз (греч. phago – ем + cytos – клетка) – поглощение твердых пищевых частиц и бактерий фагоцитами
- Пиноцитоз (греч. pino – пью) – поглощение клеткой жидкости, захват жидкости клеточной поверхностью
Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.
В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение.
Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω – вне, снаружи). Таким образом, процессы экзоцитоза и эндоцитоза противоположны.
Клеточная стенка
Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует. Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму. Клеточная стенка бактерий состоит из полимера муреина, у грибов – из хитина, у растений – из целлюлозы.
Цитоплазма
Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты – удалить из клетки.
Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.
Прокариоты и эукариоты
Прокариоты (греч. πρό – перед и κάρυον – ядро) или доядерные – одноклеточные организмы, не обладающие в отличие от эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды. Их генетический материал представлен в виде кольцевой молекулы ДНК – нуклеоида (нуклеоид – ДНК–содержащая зона клетки прокариот). К прокариотам относятся бактерии, в их числе цианобактерии (цианобактерий по-другому называют – сине-зеленые водоросли).
Эукариоты (греч. εὖ – хорошо + κάρυον – ядро) или ядерные – домен живых организмов, клетки которых содержат оформленное ядро. Растения, животные, грибы – относятся к эукариотам.
Немембранные органоиды
- Рибосома
Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке.
Запомните ассоциацию: “Рибосома – фабрика белка”. Именно здесь в ходе матричного биосинтеза – трансляции, с которой подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок – последовательность соединенных аминокислот в заданном иРНК порядке.
Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают определенную форму клетки, участвуют во внутриклеточном транспорте и процессе деления путем образования нитей веретена деления. Микротрубочки также образуют основу органоидов движения: жгутиков (у бактерий жгутик состоит из сократительного белка – флагеллина) и ресничек.
Микрофиламенты – тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме, служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.
Этот органоид характерен только для животной клетки, в клетках грибов и высших растений отсутствует. Клеточный центр состоит из 9 триплетов микротрубочек (триплет – три соединенных вместе). Участвует в образовании нитей веретена деления, располагается на полюсах клетки.
Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.
Одномембранные органоиды
- Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum – сеть)
ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности.
Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).
Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается вокруг ядра клетки, внешне напоминает стопку блинов. Это – “клеточный склад”. В нем запасаются жиры и углеводы, с которыми здесь происходят химические видоизменения.
Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.
В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.
Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) – липазы, протеазы, фосфатазы. Лизосому можно ассоциировать с “клеточным желудком”.
Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце – вторичная лизосома с непереваренными остатками, которые удаляются из клетки.
Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком. В норме у каждой клетки жизненный цикл заканчивается апоптозом – запрограммированным процессом клеточной гибели.
В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.
Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки.
Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных – сократительные вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.
Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму.
Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию.
Двумембранные органоиды
- Ядро (“ядро” по лат. – nucleus, по греч. – karyon)
Важнейший компонент эукариотической клетки – оформленное ядро, которое у прокариот отсутствует. Внутренняя часть ядра представлена кариоплазмой, в которой расположен хроматин – комплекс ДНК, РНК и белков, и одно или несколько ядрышек.
Ядрышко – место в ядре, где активно идет процесс матричного биосинтеза – транскрипция, с которым мы познакомимся подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество ядрышек или не найти ни одного.
Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам.
Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками.
Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы – во время деления, спирализованное ДНК), если же клетка не делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин – деспирализованное ДНК).
Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.
Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна – трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).
Органоид палочковидной формы. Митохондрию можно сравнить с “энергетической станцией”. Если в цитоплазме происходит анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный – аэробный этап (кислородный). В результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы) получаются 36 молекул АТФ.
Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь – кристы, на которых имеется большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена матриксом.
Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК – нуклеоида (ДНК–содержащая зона клетки прокариот), и рибосом. То есть митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.
В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.
Митохондрий особенно много в клетках мышц, в том числе – в сердечной мышечной ткани. Эти клетки выполняют активную работу и нуждаются в большом количестве энергии.
-
Хлоропласт (греч. chlōros – зелёный)
Получил свое название за счет содержащегося в нем зеленого пигмента – хлорофилла (греч. chloros – зеленый и phyllon – лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки – граны. Внутреннее пространство между тилакоидами и мембраной называется стромой.
Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая (светонезависимая) фаза – в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении фотосинтеза в дальнейшем.
Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.
Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.
Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов.
Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.