Типы кристаллических решёток; таблица, показывающая отличия кристаллических решёток графита, йода и натрия

Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения

Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки

Неорганические и органические соединения отличаются по строению. Меньше веществ, образованных молекулами. Гораздо чаще встречается немолекулярные соединения. Частицы веществ могут быть упорядочены расположены в пространстве, образуют кристаллическую решетку. Тип структуры влияет на свойства различных химических соединений.

Молекулярное и немолекулярное строение веществ

Представления о существовании атомов возникли в древности. Греческое название переводится как «неделимые». Долгое время термины «атом», «корпускула», «молекула» были почти синонимами. Ясность внесли химики всего мира в 1860 году. Ученые приняли решение называть атомами мельчайшие частицы вещества. Они могут входить в состав молекул и немолекулярных структур.

Строение — это характеристика структурных единиц вещества, их расположение в пространстве (кристаллическая решетка).

Типы веществ по строению

Типы

Общие признаки

Тип кристаллической решетки

Вещества молекулярного строения.

Мельчайшие структурные единицы (частицы) — молекулы.

Вещества немолекулярного строения.

Мельчайшие структурные частицы — атомы или ионы.

Атомная, ионная или металлическая.

Неметаллы, их соединения — вещества преимущественно молекулярного строения. Водород, кислород, азот, хлор, моно- и диоксид углерода, аммиак состоят из молекул сравнительно небольшого размера. Состав отражают формулы Н2, О2, N2, Cl2, СО, СО2, NH3. Наиболее распространенное вещество молекулярного строения — вода (Н2О) (Рис. 1).

Строение молекулы воды

Рис. 1. Строение молекулы воды

Агрегатное состояние при разных температурах отличается. В обычных условиях эти вещества являются газами. Вода при комнатной температуре — жидкость, при 0°С — превращается в лед, имеющий кристаллическое строение. При 100°С образуется газ (пар).

Сахар и другие твердые органические вещества тоже состоят из молекул. Состав глюкозы отражает формула С6Н12О6. На рис. 2 показано пространственное расположение атомов в молекуле.

Строение молекулы глюкозы

Рис. 2. Строение молекулы глюкозы

Немолекулярных соединений в природе гораздо больше. К этой группе относятся инертные газы, алмаз, графит (аллотропные видоизменения, модификации углерода), минерал кварц, различные соли, металлы. Это преимущественно твердые вещества (при комнатной температуре). Исключение — ртуть, жидкий металл, затвердевающий лишь при –30°С. Среди веществ немолекулярного строения встречаются наиболее твердые и тугоплавкие, обладающие высокой тепло- и электропроводностью.

Кристаллические решетки: типы и примеры

Структурные частицы природных и искусственно полученных веществ находятся в определенных точках пространства, на расстоянии друг от друга. Упорядоченное расположение называют кристаллической решеткой. В ее узлах находятся атомы, ионы или молекулы. На рисунках они обычно изображены кружочками. Черточками между ними условно обозначают химические связи.

Шаро-стержневые объемные модели тоже помогают лучше представить расположение структурных единиц в пространстве. Шарики символизируют частицы вещества, стержни между ними — химическую связь, как на рис. 3.

Кристаллическая решетка

Рис. 3. Кристаллическая решетка

Вещества кристаллического строения широко распространены, имеют большое практическое значение. Они встречаются в природе, находят применение в промышленности, медицине, сельском хозяйстве, быту. (Рис. 4).

Кристаллические решетки и примеры веществ

Рис. 4. Кристаллические решетки и примеры веществ

Рассмотрим особенности четырех основных типов кристаллической решетки.

Атомная

Такие кристаллические структуры распространены среди простых веществ. В узлах находятся атомы. Примеры веществ: графит и алмаз (аллотропные видоизменения, модификации углерода), кремний.

Прочную атомную кристаллическую решетку также имеют горный хрусталь и кварц (минералы состоят из диоксида кремния). Отличие от простых веществ существенное — в узлах находятся атомы кремния и кислорода, т. е. разных элементов.

Вещества атомного строения обычно твердые (за исключением графита), нерастворимые в воде, тугоплавкие, являются изоляторами или полупроводниками.

Молекулярная

В узлах кристаллической решетки — молекулы. Простые вещества с этим типом пространственного строения: S8 — кристаллическая сера, Р4 — белый фосфор, Br2 — бром, I2 — кристаллический йод. Н2О в виде льда, СО2 («сухой лед») — сложные вещества с молекулярной кристаллической решеткой.

Силы притяжения между структурными единицами относительно слабые, поэтому связи легко разрушаются. Например, йод возгоняется — переходит из твердого состояния в газообразное при комнатной температуре. (Рис. 5, 6).

Кристаллический йод и раствор в спирте

Рис. 5. Кристаллический йод и раствор в спирте

Молекулярная кристаллическая решетка йода

Рис. 6. Строение кристаллов йода

Твердые органические соединения тоже имеют преимущественно молекулярную решетку. Это непрочные структуры, которые разрушаются при повышении температуры, растворении в воде.

Ионная

В узлах расположены ионы — заряженные частицы. Классический пример вещества с этим типом кристаллической решеткой — поваренная соль или хлорид натрия. (Рис. 7).

Кристаллы поваренной соли

Рис. 7. Кристаллы поваренной соли

Катионы — положительно заряженные частицы. В электрическом поле они перемещаются к отрицательному полюсу источника тока (катоду). Отрицательные ионы движутся к аноду, имеющему заряд «+».

Ионная решетка характерна для солей, оксидов и гидроксидов металлов I–III групп периодической системы, большой группы соединений металлических элемент из других групп. Такие вещества обычно твердые и тугоплавкие.

Ионы высвобождаются при расплавлении и растворении. Расплавы и растворы являются электролитами, проводниками электрического тока, более слабыми, по сравнению с металлами.

Металлическая

Есть значительные отличия от трех предыдущих типов кристаллического строения. В узлах расположены нейтральные атомы и катионы. Между ними беспорядочно движутся электроны, образующие так называемый «электронный газ». (Рис. 8).

Читайте также:
Ковалентная полярная и неполярная связи, что это такое и как различать связь

Строение металла

Рис. 8. Строение металла

Металлы, их сплавы — твердые вещества, имеющие металлический блеск. Они тугоплавкие, обладают высокой тепло- и электропроводностью.

Все известные соединения состоят из атомов, молекул либо ионов. Упорядоченное расположение структурных единиц в пространстве — кристаллическая решетка. Физические свойства веществ во многом определяются типом соединения частиц.

Труднее разрушается атомная, легче — молекулярная кристаллическая решетка. Чтобы «освободить» частицы в составе ионного кристалла, достаточно растворить или расплавить вещество. Особенностью металлической решетки является наличие «электронного газа», высокая электропроводность веществ.

Таблица типов кристаллических решёток: йода, алмаза, графита, натрия

Химия — удивительная наука. Столько невероятного можно обнаружить в, казалось бы, обычных вещах. Всё материальное, что окружают нас повсюду, существует в нескольких агрегатных состояниях: газы, жидкости и твёрдые тела. Учёные выделили ещё и 4-е — плазму. При определённой температуре какое-либо вещество может переходить из одного состояние в другое. Например, вода: при нагревании свыше 100, из жидкой формы, превращается в пар. При температуре ниже 0 переходит в следующее агрегатную структуру — лёд.

Весь материальный мир имеет в своём составе массу одинаковых частиц, которые между собой связаны. Эти мельчайшие элементы строго выстраиваются в пространстве и образуют так называемый пространственный каркас.

Это интересно: анионы и катионы в химии, таблица растворимости.

Определение

Кристаллическая решётка — особая структура твёрдого вещества, при которой частицы стоят в геометрически строгом порядке в пространстве. В ней можно обнаружить узлы — места, где расположены элементы: атомы, ионы и молекулы и межузловое пространство.
Твёрдые вещества, в зависимости от диапазона высоких и низких температур, являются кристаллическими или аморфными — они характеризуются отсутствием определённой температуры плавления. При воздействии повышенных температур они размягчаются и постепенно переходят в жидкую форму. К такого рода веществам относятся: смола, пластилин.

Это интересно: водородная связь — примеры, механизм образования.

В связи с этим можно поделить на несколько видов:

  • атомную;
  • ионную;
  • молекулярную;
  • металлическую.

Но при различных температурах одно вещество может иметь различные формы и проявлять многообразные свойства. Это явление называется аллотропной модификацией.

Это интересно: металлы и неметаллы в периодической таблице Менделеева.

Основные сферы применения графита

Графит камень фото

Графит камень фото
Высокая стойкость к температуре, которую имеет природный углерод, обуславливает его основную сферу применения.

Это изделия, которые работают в условиях высокой температуры окружающей среды.

Например, из них делаются формы, в которых производится закалка различных инструментов.

Графит является основным материалом для производства качественных гальванических элементов.

Природный минерал и препараты, его содержащие, являются основой для таких изделий, как формы для литья, огнеупорные лакокрасочные материалы, смазки для подшипников качения и пр.

При изготовлении электродов с положительным зарядом он способствует улучшению электропроводности.

Химическая инертность минерала делает его идеальным сырьем для материалов, которые работают в агрессивных средах.

Материалы, изготовленные на его основе, способны без изменения эксплуатационных характеристик работать в тех сферах, где не могут работать другие конструкционные материалы.

Ионный тип

Противоположно заряженные ионы находятся на узлах, которые создают электромагнитное поле, характеризующее физические свойства вещества. К таковым будут относиться: электропроводность, тугоплавкость, плотность и твёрдость. Поваренная соль и нитрат калия характеризуются наличием ионной кристаллической решётки.

Не пропустите: механизм образования металлической связи, конкретные примеры.

Структура

Рассматривая, какая плотность у графита, а также свойства и виды, необходимо уделить внимание его структуре. Это слоистое вещество. Его атомы углерода выстраиваются в кристаллическую решетку, похожую на соты. Шестиугольники в одном слое плотно прилегают друг к другу. Однако связь между каждым уровнем слаба. Именно эта особенность позволяет легко сломать графит.

Плотность графита кг м3

По шкале Мооса твердость материала равна единице. Для сравнения, у алмаза этот показатель равен 10, а у керамогранита – 5. При температуре 1500°С, согласно исследованиям ученых, кристаллическая решетка графита может преобразовываться в алмаз.

В процессе промышленной обработки структура вещества меняется. Вместе с этим у разных марок графита определяются неодинаковые свойства. Если же добытый материал не был обработан искусственно, это природный тип вещества.

Металлический тип

В своём строении напоминает молекулярную, но имеет всё же более прочные связи. Отличие данного типа в том, что на её узлах находятся положительно заряженные катионы. Электроны, которые находятся в межузловом пространстве, участвуют в образовании электрического поля. Они ещё носят название электрического газа.
Простые металлы и сплавы, характеризуются металлическим типом решётки. Для них характерно наличие металлического блеска, пластичность, тепло- и электропроводность. Они могут плавиться при различных температурах.

Виды Вещества Свойства
Атомная Алмаз, графит, кремний, бор Твёрдые, тугоплавкие, не растворяются в воде
Молекулярная Йод, сера, белый фосфор, органические вещества Нетвёрдые, легко плавятся, летучие
Ионная Соли, оксиды и гидроксиды тяжёлых металлов Твёрдые, хрупкие, легкоплавкие, электропроводны
Металлическая Металлы и сплавы Блестящие, ковкие, тепло- и электропроводны.

Месторождения минералов

Алмазы зарождаются на глубине 100 км и при температуре 1300 градусов. Кимберлитовая магма, которая образует кимберлитовые трубки, вступает в действие в результате взрывов. Именно такие трубки и представляют собой коренные месторождения алмазов. Впервые подобная трубка была открыта в африканской провинции Кимберли, откуда и пошло ее название.

Читайте также:
Галогены: список элементов и химические свойства фтора, брома и йода, таблица Менделеева

Наиболее известные месторождения находятся в Индии, России и Южной Африке. На коренные месторождения приходится 80 % всех добываемых алмазов.

Чтобы найти алмаз в природе, используют рентген. Большинство из камней, которые находят, непригодны для ювелирного производства, так как обладают значительным количеством дефектов, в том числе трещинами, включениями, посторонними оттенками флуоресценцией и так далее. Поэтому их применение техническое. Такие камни делят на три категории:

  • борт — камни с зональной структурой;
  • баллас — камни, которые обладают круглой или грушевидной формой;
  • карбонадо — черный алмаз.

Алмазы большого размера с выдающимися характеристиками, как правило, получают свое название. Кроме того, высокая стоимость камня делает его желанным для многих, что гарантирует «кровавую историю».

Графит образуется в результате изменения осадочных пород. В Мексике и на Мадагаскаре можно встретить руду с графитом низкого качества. Наиболее известные месторождения — в Краснодаре и на Украине.

Различные вещества

  • Алмаз. Минерал обладает высокой ценностью и после огранки используется в ювелирных украшениях. Так в чём же заключается секрет популярности этого камня? Атомы углерода составляют основу всей решётки. Между атомами минерала существует прочная ковалентная связь. Для кристаллической решётки алмаза характерно плотное содержание атомов в виде куба. Другими словами, узлами считаются атомы углерода, а своеобразными гранями куба являются прочные ковалентные связи. Такой минерал считается самым прочным на планете, и неизвестно, сколько таких своеобразных кубов включает в себя цельный алмаз.
  • Графит. Углерод также может быть и в другой кристаллической модификации. Атомная решётка данного элемента включает в себя только атомы углерода, ей присуща слоистая структура. В графите каждый атом связан тремя атомами углерода. Из-за этого он обладает металлическим блеском, высокой теплопроводностью.
  • Кристаллическая решётка йода имеет молекулярный тип. Атомы молекул соединяются ковалентными связями, но молекулы химического элемента имеют слабые силы притяжения. Это характеризует йод тем, что он имеет малую твёрдость, низкую температуру плавления.
  • Натрий. Представитель металлической кристаллической решётки. Между катионами, расположенными в узлах решётки, двигаются электроны. Они, присоединяясь к катионам, нейтрализуют их заряд, в свою очередь, нейтральные атомы отпускают часть электронов, преобразуясь в катионы. Такой тип кристаллической решётки наделяет металл пластичностью, электро- и теплопроводностью.
  • Сухой лёд. Или оксид углерода в затвердевшем виде. Имеет молекулярную кристаллическую решётку в форме куба. Молекулы удерживаются между собой слабыми связями. иффузия читайте в нашей статье.

Это интересно: как определить валентность по таблице Менделеева?

Свойства графита:

– электрическая проводимость графита анизотропна (т.е. зависит от направления внутри самого графита). Он хорошо проводит электрический ток в направлении, параллельном базисной плоскости. В этом случае его электропроводность близка к металлической. В перпендикулярном направлении электропроводность в сотни раз меньше.

– обладает низкой твёрдостью. Твердость школе Мооса 1.

– относительно мягкий. После воздействия высоких температур становится немного более твёрдым и очень хрупким,

– плотность 2,08-2,23 г/см³,

– легко поддается механической обработке,

– цвет от железо-черного до стально-серого, блеск металлический,

– неплавкий, устойчив при нагревании в отсутствие воздуха,

– жирный (скользкий) на ощупь, оставляет след на бумаге и пальцах,

– при трении графит расслаивается на отдельные чешуйки (это свойство используется в карандашах),

– обладает достаточно большой теплопроводностью. Теплопроводность графита анизотропна. Она составляет от 100 до 354,1 Вт/(м*К) и зависит от марки графита, от направления относительно базисных плоскостей и от температуры,

– коэффициент теплового расширения графита также анизотропен и зависит от температуры. До 700 К коэффициент теплового расширения графита отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей,

– обладает высоким диамагнетизмом,

– химически малоактивен,

– обладает химической стойкостью. Кислотоупорен,

– при высокой температуре реагирует с кислородом, сгорая до углекислого газа,

– образует соединение включения с щелочными металлами, солями.

Применение в пищевой промышленности

Представленное вещество также широко применяется в пищевой промышленности. Для этого при производстве оно подвергается определенной обработке. Плотность железа, этилового спирта, графита и сахара, по понятным причинам, различна. Но представленный материал может как содержать в себе, так и входить в состав некоторых веществ. Он находится в парафинах, эфирах, спирте и даже в сахаре.

Плотность железа этилового спирта графита и сахара

В этом можно убедиться, если провести несложный опыт. Сначала нужно взять кусочек сахара. Его кладут на твердую крышку и накрывают колпачком (можно наперстком). Затем металл, которым накрыт сахар, сильно нагревают. Из-под наперстка со временем станет выделяться едкий дым. Если к нему поднести спичку, газ станет гореть.

Когда дым перестанет выделяться, можно снять наперсток. На крышке остается черная масса. Это уголь. Он представляет собой углерод, из которого и состоит графит.

Читайте также:
Гидролиз в химии, его значение и формула, определение и как сделать

Искусственный графит

Для производства очень важно учитывать, какова плотность графита. Физика дает понять, что чем больше плотность этого вещества, тем больше его теплопроводность. Искусственный графит характеризуется высокой чистотой (до 99%). Это также значительно увеличивает плотность материала.

Какая плотность у графита

Производство очищенного графита осуществляется путем термохимических и термомеханических воздействий. Для каждой отрасли производства изготавливается вещество с определенным набором качеств. Это позволяет удовлетворить потребности промышленности в графите с заданными физическими характеристиками.

Маркировка веществ, созданных искусственно, включает в себя разбивку типов материала по сфере назначения. Различают литейный, электроугольный, аккумуляторный, элементный, смазочный и карандашный графит. Существуют также специальные марки, применяемые в ядерных реакторах.

Кристаллическая решетка и типы кристаллических решеток

Золото входит в обособленную группу драгоценных металлов.

золото

Как знать, презирающая чернь и холопов, надменное злато «не желает» вступать в контакт (химические реакции) с другими элементами. Драгоценным оно было всегда — красота, блеск, долговечность металла полагались аристократам и прочим любимцам судьбы.

Химические и физические свойства:

  1. Чистое золото имеет очень низкую твердость — 2,5-3. Кто читал книги об истории, помнит, что золотые монеты нередко «пробовали на зуб». На настоящих монетах оставался след от зубов, на фальшивой (с большой долей примесей, обычно меди) — нет.
  2. Золото плавится при температура 1064°С; нагреете до 2947 °С — начнет кипеть и улетучиваться.
  3. Удельный вес металла 19,3 г/см3. Килограмм золота легко поместится в кармане или дамской сумочке — его легко «упаковать» в кубик со стороной 3,7 см.
  4. Ковкость металла поражает. Всего один грамм можно раскатать в лист площадью в половину квадратного метра. Это «сусальное золото».
  5. Для производства украшений у злата есть еще одно привлекательное свойство. Металл очень пластичный и тягучий, а значит – легко сгибается и растягивается.
  6. Кристаллическая структура решетки металла кубическая, гранецентрированная.
  7. Химически металл очень инертен. В нормальных условиях он не желает реагировать с другими элементами. Исключение — ртуть.
  8. Растворить солнечный металл можно в «царской водке» (смеси азотной с соляной кислотами в пропорции 1:3). Медленно, но реагирует с цианидами, йодистым калием, жидким бромом.

К сведению: ваши золотые украшения стоит поберечь от йода, ртути, хлора.

Название, символ, номер Зо́лото / Aurum (Au), 79
Атомная масса (молярная масса) 196,966569(4)[1] а. е. м. (г/моль)
Электронная конфигурация [Xe] 4f14 5d10 6s1
Радиус атома 144 пм
Химические свойства
Ковалентный радиус 134 пм
Радиус иона (−3e) 185 (+1e) 137 пм
Электроотрицательность 2,64 (шкала Полинга)
Электродный потенциал Au←Au3+ 1,50 В, Au←Au+ 1,70В
Степени окисления −1,1,3,5
Энергия ионизации (первый электрон) 889,3 (9,22) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 19,3-19,32[2][3] г/см³
Температура плавления 1337,33 К (1064,18 °C, 1947,52 °F)[2]
Температура кипения 3129 К (2856 °C, 5173 °F)[2]
Уд. теплота плавления 12,68 кДж/моль
Уд. теплота испарения ~340 кДж/моль
Молярная теплоёмкость 25,39[4] Дж/(K·моль)
Молярный объём 10,2 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая гранецентрированная типа Cu, пр. группа Fm3m
Параметры решётки 4,0781 Å
Отношение c/a 1
Температура Дебая 170,00 K
Прочие характеристики
Теплопроводность (300 K) 318 Вт/(м·К)
Номер CAS 7440-57-5

Рекомендуем: РТУТЬ — «кровь дракона» в лампах и реакторах

Атомная кристаллическая решетка

Вещества с атомной кристаллической решеткой, как правило, имеют в своих узлах, состоящих собственно из атомов сильные ковалентные связи. Ковалентная связь происходит, когда два одинаковых атома делятся друг с другом по-братски электронами, образуя, таким образом, общую пару электронов для соседних атомов. Из-за этого ковалентные связи сильно и равномерно связывают атомы в строгом порядке – пожалуй, это самая характерная черта строения атомной кристаллической решетки. Химические элементы с подобными связями могут похвастаться своей твердостью, высокой температурой плавления. Атомную кристаллическую решетку имеют такие химические элементы как алмаз, кремний, германий, бор.

Месторождения и их классификация

Происхождение нашего драгоценного металла в месторождениях зависит от вида породы:

  1. Золото-кварцевые формации. Приурочены к зонам разломов. Распределение металла неравномерно; образуются обогащенные участки, называемые «бонанцами» или «рудными столбами».
  2. Месторождения золото-полисульфидно-кварцевой формации. Приурочены к гранитоидным и субвулканическим комплексам. Среднее содержание металла 10-15 г/т.
  3. Золото-лиственнитовые месторождения. К ним относится Хаак-Саирское (Тува), Мечниковское, Кировское (Урал) месторождения.
  4. Золото-сульфидные месторождения. Связаны с вулканогенно-осадочными толщами.
  5. Золото-порфировые месторождения. К этому типу относятся Березняковское (Урал), Юбилейное (Казахстан), Кызык-Чадр (Тува) месторождения.
  6. Месторождения зон окисления. Приурочены к верхним горизонтам сульфидных залежей на многих колчеданных месторождениях.
  7. Россыпные месторождения часто сопровождают коренные золоторудные поля. Длина россыпей от 200-300 метров, реже 3-5 км. Ширина россыпей 20-30 метров, реже — 100-300 метров. По условиям залегания существуют россыпи, связанные с руслами, поймами рек, террасами, долинами, межгорными впадинами.

Крупнейшее в мире месторождение золота расположено в ЮАР. По некоторым данным, здесь получают до половины мировой добычи.

Много ли злата на Земле

Многие аналитики считают, что запасы добытого «презренного металла» подсчитать сложно.

Эксперты дают цифры, разнящиеся на порядки (от 155 000 тонн до 2,5 миллионов тонн).

Существуют страны, где процветает нелегальная «заготовка» золота, а иные государства предпочитают держать в тайне объемы добычи. Принцип «вы мои деньги не считайте» работает как у отдельного гражданина, так и на государственном уровне.

Читайте также:
Алканы: строение и химические свойства, получение насыщенных углеводородов

Энергетический уровень

Отличия неметаллов и металлов первоначально обусловлены строением их атомов. Начнем с количества электронов на внешнем энергетическом уровне. У атомов металлов оно варьирует от одного до трех. Как правило, они обладают большим радиусом, поэтому атомы металлов достаточно легко отдают наружные электроны, так как имеют сильные восстановительные свойства.

У неметаллов число электронов на внешнем уровне больше. Это объясняет их окислительную активность. Неметаллы присоединяют недостающие электроны, полностью заполняя энергетический уровень. Самые сильные окислительные свойства проявляют неметаллы второго и третьего периода VI-VII групп.

Заполненный энергетический уровень содержит 8 электронов. Самой большой окислительной способностью обладают галогены с валентностью I. Среди них лидирует фтор, так как у этого элемента нет свободных орбиталей.

пузырьки кислорода в воде

Добыча металла с древних времен до наших дней

Золото — удивительный металл. Все полезные ископаемые добываются, чтобы использовать и расходовать, его же в основном копят. Государства и отдельные граждане.

От Египта до Америки

Считается, что первыми добычу желтого металла начали египтяне. Хроники зафиксировали добычу металла в Аравийско-Нубийской провинции. Там были богатейшие месторождения. Еще во времена Тутмоса III в год там добывали около 50 тонн золота. А всего за время эксплуатации месторождение дало более 3500 тонн металла.

Однако месторождение истощилось. Многие историки связывают упадок Египта именно с падением количества драгоценного металла в государстве.

В Европе нашли новые месторождения (Испания, Австро-Венгрия). А с испанскими завоеваниями в Америке солнечный металл хлынул в Старый Свет потоком.

За всю историю человечества было добыто около 167 000 тонн драгоценного металла.

Из них в промышленности использовали 12%, из 50% люди сделали украшения.

В любом случае, добыча драгметалла стимулировала развитие металлургии, а заодно и международную торговлю.

золотодобыча

Современная добыча золота

Времена золотой лихорадки, которые сотрясали страны, давно прошли. Жестокая романтика, когда тысячи людей разорялись, а многие и гибли, ушли в прошлое. Хотя единицы из них неприлично богатели.

Сейчас золотодобыча учитывает прибыли и накладные расходы, ни шагу не ступит без предварительной разведки месторождений, оценки экономических рисков, строительства рудников с применением надлежащего оборудования.

Рекомендуем: БАРИЙ — от китайского синего до рентгеноскопии

В современное время добычу золотосодержащей руды ведут в основном на большой глубине или из истощенных россыпных месторождений. Золото в природе — ресурс не возобновляемый, а добывают его с незапамятных времен. Еще в старину «сняты сливки» с богатейших месторождений, а нам, потомкам, остается тяжелая работа выбирать золото из уже «очищенных» мест. Или, как вариант, желтый металл добывают на большой глубине.

Золото и его сплавы

Драгоценный металл золото ювелиры используют в виде сплавов. Издревле известен электр (или электрон) – сплав золота и серебра. Об этом писал Гомер в «Одиссее»: «дворец Менелая сверкал золотом, электром, серебром и слоновой костью».

В позднесредневековой Японии для ювелирных изделий применялись сплавы: сякудо (красная медь), у-кин (жадное золото) — медно-золотой сплав (3-25% драгметалла); тюсё — медь с добавкой золота (<3%), ао-кин (тусклое золото) — аналог электра.

Сейчас палитра цветов сплавов расширилась, ювелиры используют золото: белое, лимонное, красное, синее, черное, розовое, зеленое. К злату добавляют кадмий, палладий, никель, серебро, медь, цинк — эти добавки придают необходимый оттенок сплаву.

Познавательно: «аметистовое» золото (пурпурное, фиолетовое), сплав, изобретенный в Сингапуре, востребован у ювелиров. Сейчас оно на пике моды.

Металлическая кристаллическая решетка

Тип связи металлической кристаллической решетки гибче и пластичнее ионной, хотя внешне они весьма похожи. Отличительной особенностью ее является наличие положительно заряженных катионов (ионов метала) в узлах решетки. Между узлами живут электроны, участвующие в создании электрического поля, эти электроны еще называются электрическим газом. Наличие такой структуры металлической кристаллической решетки объясняет ее свойства: механическую прочность, тепло и электропроводность, плавкость.

Применение

Свойства драгоценного металла (устойчивость к коррозии, пластичность, ковкость) нашли ему место в жизни человека:

  1. Промышленность, в основном электронная. Планшеты, телефоны, компьютеры не сделать без драгоценных металлов. Этот сектор промышленности потребляет с каждым годом все больше драгметалла.
  2. Стоматология. Зубные протезы, коронки до сих пор пользуются спросом. Хотя здесь потребление идет на спад, появились более современные и надежные материалы.
  3. Фармакология. Препараты, содержащие золото, применят при лечении туберкулеза, красной волчанки, ревматоидных артритов. В лечении онкологии стали применять изотопы металла. Исследования показывают, что радиоактивное золото может помочь в лечении СПИДа.
  4. Пищевая промышленность. Желающие попробовать кофе, пиво, шоколадку с золотыми хлопьями уже могут это сделать. Золото официально зарегистрировано в качестве пищевой добавки. Запомните, не перепутайте — это Е175.
  5. Ювелирные изделия поглощают львиную долю производства желтого металла.

Золотое кольцо с ситаллом

Золотое кольцо с ситаллом

Интересно: журнал British Medical Journal опубликовал результаты исследования останков Дианы де Пуатье, фаворитки короля Франции Генриха II. В ее 60 лет она выглядела 30-летней. Причина (по выводу исследователей) в количестве золота, содержавшемся в костях и волосах останков фаворитки. Оно превышало норму в десятки раз. Диана принимала эликсиры с драгоценным металлом, которые ей привозили из Египта.

Читайте также:
Ковалентная химическая связь: полярная, неполярная, схемы образования и примеры молекул

Физические свойства

Цвет минерала железно-чёрный переходящий в стально-серый
Цвет черты чёрный переходящий в стально-серый
Прозрачность непрозрачный
Блеск полуметаллический
Спайность весьма совершенная по
Твердость (шкала Мооса) 1-2
Излом слюдоподобный
Прочность гибкий
Плотность (измеренная) 2.09 — 2.23 г/см3
Радиоактивность (GRapi)

Драгметаллы — в монеты

Власть золота над человеком в полной мере проявилась, когда из предмета роскоши «презренный металл» стал мерой стоимости товара — деньгами. Первыми догадались делать монеты из золота лидийцы.

Рекомендуем: НИКЕЛЬ — «пасынок» в семье серебристых металлов

Последний лидийский царь Крез (помните, конечно – «богат как Крез») придумал биметаллическую (золото-серебро) систему. Идея была такой удачной, что жила и процветала многие века.

Дарий, персидский царь, начал вместо клейма чеканить на монетах собственное изображение.

Монетарным стандартом между золотом и серебром часто был 1:10. Но соотношения постоянно менялись. В Древнем Египте серебро было дороже золота.

золотые монеты

Сколько золота в колечке

Государства жестко контролируют меры чистоты, то есть содержание драгоценных металлов, в сплавах.

Для этого разработана система проб. Это определение количество чистого металла в сплаве. Это количество (проба) называется клеймом.

Важно: в России сплавы, содержащие более 30% драгметалла, должны иметь пробу.

Существует 4 системы проб. Самые популярные — каратная и метрическая.

Метрическая система принята в странах, подписавших Конвенцию о клеймении драгметаллов. Это Россия, Франция, Германия, Израиль, Кипр и еще несколько стран.

Британскую каратную систему предпочитают в Канаде, Швейцарии, США. Ирландцы мудро ставят на изделии обе пробы — каратную и метрическую. А Великобритания ставит метрическую пробу, но в описании товара указывает и каратную.

проба металла

Познавательно: хотите пересчитать караты в метрическую пробу — умножьте число карат на 125 и разделите на 3. То есть, 18 каратное изделие будет соответствовать пробе 750 (18х125:3).

Пересчитаем метрическую пробу в караты — метрическую пробу умножаем на 24 и делим на 1000. То есть, изделие с пробой 750 будет соответствовать 18 каратам.

Морфология

Морфология

Хорошо образованные кристаллы редки. Кристаллы пластинчатые, чешуйчатые, кривогранные, обычно имеют пластинчатую несовершенную форму. Чаще бывает представлен листочками без кристаллографических очертаний и их агрегатами.

Образует сплошные скрытокристаллические, листоватые или округлые радиально-лучистые агрегаты, реже — сферолитовые агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто наблюдается треугольная штриховка на плоскостях (0001).

Подделки, фальшивки…

Вынуждены вас огорчить: больше 70% ввозимого в Россию золота — фальсификация. Много золотых украшений ввозят, не затрудняя проверками таможню и пробирный контроль, так что будьте осторожны при покупке ювелирных изделий.

Порой отличить подделку просто невозможно, несмотря на проверку на детекторе. Особенно, если украшение импортное.

Покупать ювелирные украшения лучше в солидных салонах и пусть это будет производство известных российских или зарубежных фирм. Стоимость изделия будет выше, чем на распродажах и в сомнительных местах, но вероятность нарваться на подделку меньше.

При покупке обращайте внимание на наличие клейма (его подделка — уголовщина, с таким большинство мошенников стараются не связываться).

Внимательно осмотрите «изнанку» изделия — чем она аккуратнее, чем тщательнее закреплены камни — тем выше гарантия подлинности.

Что такое элементарная ячейка?

Элементарная ячейка кристаллической решетки – это наименьшая часть твердого тела, которая позволяет охарактеризовать его свойства. Она служит основой решетки и дублируется в ней бесчисленное количество раз.

Данная модель используется для упрощения визуального описания внутреннего строения кристаллов. При этом применяется система из 3 кристаллографических координатных осей, которые отличаются от обычных ортогональных тем, что они являются конечными отрезками определенного размера. Углы между осями могут быть равны 90° или быть непрямыми.

Если плотно заполнить элементарными ячейками определенный объем, то можно получить идеальный монокристалл. На практике более распространены поликристаллы, состоящие из нескольких ограниченных в пространстве регулярных структур.

Кристаллические решетки. Строение вещества

Все молекулы состоят из мельчайших частиц – атомов. Все открытые на настоящий момент атомы собраны в таблице Менделеева.

Атом – это мельчайшая, химически неделимая частица вещества, сохраняющая его химические свойства. Атомы соединяются между собой химическими связями. Ранее мы уже рассматривали виды химических связей и их свойства. Обязательно изучите теорию по теме: Типы химических связей, перед тем, как изучать эту статью!

Теперь рассмотрим, как могут соединяться частицы в веществе.

В зависимости от расположения частиц друг относительно друга свойства образуемых ими веществ могут очень сильно различаться. Так, если частицы расположены друг от друга далеко (расстояние между частицами намного больше размеров самих частиц), между собой практически не взаимодействуют, перемещаются в пространстве хаотично и непрерывно, то мы имеем дело с газом .

Если частицы расположены близко друг к другу, но хаотично, больше взаимодействуют между собой, совершают интенсивные колебательные движения в одном положении, но могут перескакивать в другое положение, то это модель строения жидкости .

Если же частицы расположены близко к друг другу, но более упорядоченно, и больше взаимодействуют между собой, а двигаются только в пределах одного положения равновесия, практически не перемещаясь в другие положения, то мы имеем дело с твердым веществом .

Большинство известных химических веществ и смесей могут существовать в твердом, жидком и газообразном состояниях. Самый простой пример – это вода. При нормальных условиях она жидкая, при 0 о С она замерзает – переходит из жидкого состояния в твердое, и при 100 о С закипает – переходит в газовую фазу – водяной пар. При этом многие вещества при нормальных условиях – газы, жидкости или твердые. Например, воздух – смесь азота и кислорода – это газ при нормальных условиях. Но при высоком давлении и низкой температуре азот и кислород конденсируются и переходят в жидкую фазу. Жидкий азот активно используют в промышленности. Иногда выделяют плазму, а также жидкие кристаллы, как отдельные фазы.

12

Очень многие свойства индивидуальных веществ и смесей объясняются взаимным расположением частиц в пространстве друг относительно друга!

Данная статья рассматривает свойства твердых тел, в зависимости от их строения. Основные физические свойства твердых веществ: температура плавления, электропроводность, теплопроводность, механическая прочность, пластичность и др.

Температура плавления – это такая температура, при которой вещество переходит из твердой фазы в жидкую, и наоборот.

melting

Пластичность – это способность вещества деформироваться без разрушения.

Пластичность

Электропроводность – это способность вещества проводить ток.

Ток – это упорядоченное движение заряженных частиц. Таким образом, ток могут проводить только такие вещества, в которых присутствуют подвижные заряженные частицы. По способности проводить ток вещества делят на проводники и диэлектрики. Проводники – это вещества, которые могут проводить ток (т.е. содержат подвижные заряженные частицы). Диэлектрики – это вещества, которые практически не проводят ток.

electrocuted

В твердом веществе частицы вещества могут располагаться хаотично, либо более упорядоченно. Если частицы твердого вещества расположены в пространстве хаотично, вещество называют аморфным . Примеры аморфных веществ – уголь, слюдяное стекло.

Аморфный бор

Если частицы твердого вещества расположены в пространстве упорядоченно, т.е. образуют повторяющиеся трехмерные геометрические структуры, такое вещество называют кристаллом , а саму структуру – кристаллической решеткой . Большинство известных нам веществ – кристаллы. Сами частицы при этом расположены в узлах кристаллической решетки.

Кристаллические вещества различают, в частности, по типу химической связи между частицами в кристалле – атомные, молекулярные, металлические, ионные; по геометрической форме простейшей ячейки кристаллической решетки – кубическая, гексагональная и др.

В зависимости от типа частиц, образующих кристаллическую решетку , различают атомную, молекулярную, ионную и металлическую кристаллическую структуру .

Атомная кристаллическая решетка

diamond

Атомная кристаллическая решетка образуется, когда в узлах кристалла расположены атомы . Атомы соединены между собой прочными ковалентными химическими связями. Соответственно, такая кристаллическая решетка будет очень прочной, разрушить ее непросто. Атомную кристаллическую решетку могут образовывать атомы с высокой валентностью, т.е. с большим числом связей с соседними атомами (4 или больше). Как правило, это неметаллы: простые вещества — кремния, бора, углерода (аллотропные модификации алмаз, графит), и их соединения (бороуглерод, оксид кремния (IV) и др.). Поскольку между неметаллами возникает преимущественно ковалентная химическая связь, свободных электронов (как и других заряженных частиц) в веществах с атомной кристаллической решеткой в большинстве случаев нет. Следовательно, такие вещества, как правило, очень плохо проводят электрический ток, т.е. являются диэлектриками. Это общие закономерности, из которых есть ряд исключений.

атомные кристаллы

Связь между частицами в атомных кристаллах: ковалентная полярная или неполярная.

В узлах кристалла с атомной кристаллической структурой расположены атомы.

Фазовое состояние атомных кристаллов при нормальных условиях: как правило, твердые вещества.

Вещества , образующие в твердом состоянии атомные кристаллы:

  1. Простые веществас высокой валентностью (расположены в середине таблицы Менделеева): бор, углерод, кремний, и др.
  2. Сложные вещества, образованные этими неметаллами: кремнезем (оксид кремния, кварцевый песок) SiO2; карбид кремния (карборунд) SiC; карбид бора, нитрид бора и др.

Физические свойства веществ с атомной кристаллической решеткой:

прочность;

— тугоплавкость (высокая температура плавления);

— низкая электропроводность;

— низкая теплопроводность;

— химическая инертность (неактивные вещества);

— нерастворимость в растворителях.

Молекулярная кристаллическая решетка

suhoyled

Молекулярная кристаллическая решетка – это такая решетка, в узлах которой располагаются молекулы. Удерживают молекулы в кристалле слабые силы межмолекулярного притяжения (силы Ван-дер-Ваальса, водородные связи, или электростатическое притяжение). Соответственно, такую кристаллическую решетку, как правило, довольно легко разрушить. Вещества с молекулярной кристаллической решеткой – легкоплавкие, непрочные. Чем больше сила притяжения между молекулами, тем выше температура плавления вещества. Как правило, температуры плавления веществ с молекулярной кристаллической решеткой не выше 200-300К. Поэтому при нормальных условиях большинство веществ с молекулярной кристаллической решеткой существует в виде газов или жидкостей. Молекулярную кристаллическую решетку, как правило, образуют в твердом виде кислоты, оксиды неметаллов, прочие бинарные соединения неметаллов, простые вещества, образующие устойчивые молекулы (кислород О2, азот N2, вода H2O и др.), органические вещества. Как правило, это вещества с ковалентной полярной (реже неполярной) связью. Т.к. электроны задействованы в химических связях, вещества с молекулярной кристаллической решеткой – диэлектрики, плохо проводят тепло.

Модель Кристаллическая решетка йода купить солнечный-мир.рф

Связь между частицами в молекулярных кристаллах: межмолекулярные водородные связи, электростатические или межмолекулярные силы притяжения.

В узлах кристалла с молекулярной кристаллической структурой расположены молекулы.

Фазовое состояние молекулярных кристаллов при нормальных условиях: газы, жидкости и твердые вещества.

Вещества , образующие в твердом состоянии молекулярные кристаллы:

  1. Простые вещества-неметаллы, образующие маленькие прочные молекулы(O2, N2, H2, S8 и др.);
  2. Сложные вещества (соединения неметаллов) с ковалентными полярными связями(кроме оксидов кремния и бора, соединений кремния и углерода) — вода H2O, оксид серы SO3 и др.
  3. Одноатомные инертные газы (гелий, неон, аргон, криптони др.);
  4. Большинство органических веществ, в которых нет ионных связейметан CH4, бензол С6Н6 и др.

Физические свойства веществ с молекулярной кристаллической решеткой:

— легкоплавкость (низкая температура плавления):

— высокая сжимаемость;

— молекулярные кристаллы в твердом виде, а также в растворах и расплавах не проводят ток;

— фазовое состояние при нормальных условиях – газы, жидкости, твердые вещества;

— высокая летучесть;

— малая твердость.

Ионная кристаллическая решетка

salt

В случае, если в узлах кристалла находятся заряженные частицы – ионы, мы можем говорить о ионной кристаллической решетке . Как правило, с ионных кристаллах чередуются положительные ионы (катионы) и отрицательные ионы (анионы), поэтому частицы в кристалле удерживаются силами электростатического притяжения . В зависимости от типа кристалла и типа ионов, образующих кристалл, такие вещества могут быть довольно прочными и тугоплавкими. В твердом состоянии подвижных заряженных частиц в ионных кристаллах, как правило, нет. Зато при растворении или расплавлении кристалла ионы высвобождаются и могут двигаться под действием внешнего электрического поля. Т.е. проводят ток только растворы или расплавы ионных кристаллов. Ионная кристаллическая решетка характерна для веществ с ионной химической связью. Примеры таких веществ – поваренная соль NaCl, карбонат кальция – CaCO3 и др. Ионную кристаллическую решетку, как правило, в твердой фазе образуют соли, основания, а также оксиды металлов и бинарные соединения металлов и неметаллов.

Связь между частицами в ионных кристаллах: ионная химическая связь.

В узлах кристалла с ионной решеткой расположены ионы.

Фазовое состояние ионных кристаллов при нормальных условиях: как правило, твердые вещества.

Химические вещества с ионной кристаллической решеткой:

  1. Соли (органические и неорганические), в том числе соли аммония (например, хлорид аммония NH4Cl);
  2. Основания;
  3. Оксиды металлов;
  4. Бинарные соединения, в составе которых есть металлы и неметаллы.

Физические свойства веществ с ионной кристаллической структурой:

— высокая температура плавления (тугоплавкость);

— растворы и расплавы ионных кристаллов – проводники тока;

— большинство соединений растворимы в полярных растворителях (вода);

— твердое фазовое состояние у большинства соединений при нормальных условиях.

Металлическая кристаллическая решетка

12

И, наконец, металлы характеризуются особым видом пространственной структуры – металлической кристаллической решеткой, которая обусловлена металлической химической связью . Атомы металлов довольно слабо удерживают валентные электроны. В кристалле, образованном металлом, происходят одновременно следующие процессы: часть атомов отдает электроны и становится положительно заряженными ионами; эти электроны хаотично перемещаются в кристалле; часть электронов притягивается к ионам. Эти процессы происходят одновременно и хаотично. Таким образом, возникают ионы , как при образовании ионной связи, и образуются общие электроны , как при образовании ковалентной связи. Свободные электроны перемещаются хаотично и непрерывно по всему объему кристалла, как газ. Поэтому иногда их называют « электронным газом ». Из-за наличия большого числа подвижных заряженных частиц металлы проводят ток, тепло. Температура плавления металлов сильно варьируется. Металлы также характеризуются своеобразным металлическим блеском, ковкостью, т.е. способностью изменять форму без разрушения при сильном механическом воздействии, т.к. химические связи при этом не разрушаются.

Металлическая кристаллическая решетка

Связь между частицами : металлическая химическая связь.

В узлах кристалла с металлической решеткой расположены ионы металлов и атомы.

Фазовое состояние металлов при обычных условиях: как правило, твердые вещества (исключение — ртуть, жидкость при обычных условиях).

Химические вещества с металлической кристаллической решеткой — простые вещества-металлы.

Физические свойства веществ с металлической кристаллической решеткой:

— высокая тепло- и электропроводность;

— ковкость и пластичность;

— металлический блеск;

— металлы, как правило, нерастворимы в растворителях;

— большинство металлов – твердые вещества при нормальных условиях.

Сравнение свойств веществ с различными кристаллическими решетками

Тип кристаллической решетки (или отсутствие кристаллической решетки) позволяет оценить основные физические свойства вещества. Для примерного сравнения типичных физических свойств соединений с разными кристаллическими решетками очень удобно использовать химические вещества с характерными свойствами. Для молекулярной решетки это, например, углекислый газ, для атомной кристаллической решетки — алмаз, для металлической — медь, и для ионной кристаллической решетки — поваренная соль, хлорид натрия NaCl.

Сравнение веществ с разными видами решеток

Сводная таблица по структурам простых веществ, образованных химическими элементами из главных подгрупп таблицы Менделеева (элементы побочных подгрупп являются металлами, следовательно, имеют металлическую кристаллическую решетку).

1. Типы кристаллических решёток

Большинство твёрдых веществ имеет кристаллическое строение, которое характеризуется строго определённым расположением частиц.

Если соединить частицы условными линиями, то получится пространственный каркас, называемый кристаллической решёткой .

Точки, в которых размещены частицы кристалла, называют узлами решётки. В узлах воображаемой решётки могут находиться атомы, ионы или молекулы.

В зависимости от природы частиц, расположенных в узлах, и характера связи между ними различают четыре типа кристаллических решёток: ионную , металлическую , атомную и молекулярную .

Их образуют вещества с ионной связью. В узлах такой решётки располагаются положительные и отрицательные ионы, связанные между собой электростатическим взаимодействием.

Ионы могут быть простые или сложные. Например, в узлах кристаллической решётки хлорида натрия находятся простые ионы натрия Na + и хлора Cl − , а в узлах решётки сульфата калия чередуются простые ионы калия K + и сложные сульфат-ионы S O 4 2 − .

Связи между ионами в таких кристаллах прочные. Поэтому ионные вещества твёрдые , тугоплавкие , нелетучие . Такие вещества хорошо растворяются в воде .

Sodium-chloride-3D-ionic.png

crystal-955935_640.jpg

Металлическими называют решётки, которые состоят из положительных ионов и атомов металла и свободных электронов.

Их образуют вещества с металлической связью. В узлах металлической решётки находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы, отдавая свои внешние электроны в общее пользование).

Температуры плавления металлов могут быть разными (от (–37) °С у ртути до двух-трёх тысяч градусов). Но все металлы имеют характерный металлический блеск , ковкость , пластичность , хорошо проводят электрический ток и тепло .

4.png

database-152091_640.png

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, соединённые ковалентными связями.

Такой тип решётки имеет алмаз — одно из аллотропных видоизменений углерода. К веществам с атомной кристаллической решёткой относятся графит , кремний , бор и германий , а также сложные вещества, например, карборунд SiC и кремнезём , кварц , горный хрусталь , песок , в состав которых входит оксид кремния((IV)) Si O 2 .

Таким веществам характерны высокая прочность и твёрдость . Так, алмаз является самым твёрдым природным веществом.

У веществ с атомной кристаллической решёткой очень высокие температуры плавления и кипения . Например, температура плавления кремнезёма — (1728) °С, а у графита она выше — (4000) °С.

2.png

Молекулярными называют решётки, в узлах которых находятся молекулы, связанные слабым межмолекулярным взаимодействием.

Несмотря на то, что внутри молекул атомы соединены очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому молекулярные кристаллы имеют небольшую прочность и твёрдость , низкие температуры плавления и кипения .

Такие вещества летучи . Например, кристаллические иод и твёрдый оксид углерода((IV)) («сухой лёд») испаряются, не переходя в жидкое состояние.

Такой тип решётки имеют простые вещества в твёрдом агрегатном состоянии: благородные газы с одноатомными молекулами ( He , Ne , Ar , Kr , Xe , Rn ), а также неметаллы с двух- и многоатомными молекулами ( H 2 , O 2 , N 2 , Cl 2 , I 2 , O 3 , P 4 , S 8 ).

Молекулярную кристаллическую решётку имеют также вещества с ковалентными полярными связями: вода — лёд , иод , твёрдые аммиак , кислоты , оксиды большинства неметаллов . Большинство органических соединений тоже представляют собой молекулярные кристаллы ( нафталин , сахар , глюкоза ).

9.png

Iod_kristall.jpg

Попробуем определить, каковы примерно температуры плавления у фторида натрия , фтороводорода и фтора .

У фторида натрия — ионная кристаллическая решётка. Значит, его температура плавления будет высокой. Фтороводород и фтор имеют молекулярные кристаллические решётки. Поэтому их температуры плавления будут невысокими. Молекулы фтороводорода полярные, а фтора — неполярные. Значит, межмолекулярное взаимодействие у фтороводорода будет сильнее, и его температура плавления будет выше по сравнению со фтором.

Экспериментальные данные подтверждают эти предположения: температуры плавления NaF , HF и F 2 составляют соответственно (995) °С, (–83) °С, (–220) °С.

Типы кристаллических решеток

Назад Вперёд

Тип урока: Комбинированный.

Цель урока: Создать условия для формирования умения учащихся устанавливать причинно-следственную зависимость физических свойств веществ от вида химической связи и типа кристаллической решетки, предсказывать тип кристаллической решетки на основе физических свойств вещества.

Задачи урока:

  • Сформировать понятия о кристаллическом и аморфном состоянии твердых тел, ознакомить учащихся с различными типами кристаллических решеток, установить зависимость физических свойств кристалла от характера химической связи в кристалле и типа кристаллической решетки, дать учащимся основные представления о влиянии природы химической связи и типов кристаллических решеток на свойства вещества.
  • Продолжить формирование мировоззрения учащихся, рассмотреть взаимное влияние компонентов целого-структурных частиц веществ, в результате которого появляются новые свойства, воспитывать умения организовать свой учебный труд, соблюдать правила работы в коллективе.
  • Развивать познавательный интерес школьников, используя проблемные ситуации;

Оборудование: Периодическая система Д.И. Менделеева, коллекция «Металлы», неметаллы: сера, графит, красный фосфор, кристаллический кремний, йод; Презентация «Типы кристаллических решёток», модели кристаллических решеток разных типов (поваренной соли, алмаза и графита, углекислого газа и йода, металлов), образцы пластмасс и изделий из них, стекло, пластилин, компьютер, проектор.

Ход урока

1. Организационный момент.

Учитель приветствует учеников, фиксирует отсутствующих.

2. Проверка знаний по темам” Химическая связь. Степень окисления”.

Самостоятельная работа (15 минут)

3. Изучение нового материала.

Учитель озвучивает тему урока и цель урока. (Слайд 1,2)

Учащиеся записывают в тетради дату, тему урок.

Актуализация знаний.

Учитель задаёт вопросы классу:

  1. Какие виды частиц вы знаете? Имеют ли заряды ионы, атомы и молекулы?
  2. Какие виды химических связей вы знаете?
  3. Какие вам известны агрегатные состояния веществ?

Учитель: «Любое вещество может быть газом, жидкостью и твёрдым веществом. Например, вода. При обычных условиях – это жидкость, но она может быть паром и льдом. Или кислород при обычных условиях представляет собой газ, при температуре -1940 C он превращается в жидкость голубого цвета, а при температуре -218,8°C затвердевает в снегообразную массу, состоящую из кристаллов синего цвета. На этом уроке мы рассмотрим твёрдое состояние веществ: аморфное и кристаллическое». (Слайд 3)

Учитель: аморфные вещества не имеют чёткой температуры плавления – при нагревании они постепенно размягчаются и переходят в текучее состояние. К аморфным веществам относят, например шоколад, который тает и в руках и во рту; жевательную резинку, пластилин, воск, пластмассы (показываются примеры таких веществ). (Слайд 7)

Кристаллические вещества имеют чёткую температуру плавления и, главное, характеризуются правильным расположением частиц в строго определенных точках пространства. (Слайды 5,6) При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решёткой. Точки, в которых размещены частицы кристалла, называют узлами решётки.

Учащиеся записывают в тетрадь определение: «Кристаллической решёткой называют совокупность точек пространства, в которых располагаются частицы, образующие кристалл. Точки, в которых размещаются частицы кристалла, называют узлами решётки».

В зависимости от того, какие виды частиц находятся в узлах этой решётки, различают 4 типа решёток. (Слайд 8) Если в узлах кристаллической решётки находятся ионы, то такая решётка называется ионной.

Учитель задаёт учащимся вопросы:

– Как будут называться кристаллические решётки, в узлах которых находятся атомы, молекулы?

Но есть кристаллические решётки, в узлах которых находятся и атомы, и ионы. Такие решётки называются металлическими.

Сейчас мы будем заполнять таблицу: «Кристаллические решётки, вид связи и свойства веществ». В ходе заполнения таблицы мы будем устанавливать взаимосвязь между типом решётки, видом связи между частицами и физическими свойствами твёрдых веществ.

Далее на экране появляется таблица. (Слайд 9). Её заполнение идёт в ходе диалога учителя с учащимися.

Рассмотрим 1-й тип кристаллической решётки, которая называется ионной. (Слайд 9)

– Какие частицы располагаются в узлах этой решётки?

– Какая химическая связь в этих веществах?

Посмотрите на ионную кристаллическую решётку (показывается модель такой решётки). В её узлах находятся положительно и отрицательно заряженные ионы. Например, кристалл хлорида натрия построен из положительных ионов натрия и отрицательных хлорид-ионов, образующих решётку в форме куба. К веществам с ионной кристаллической решёткой относятся соли, оксиды и гидроксиды типичных металлов. Вещества с ионной кристаллической решёткой обладают высокой твёрдостью и прочностью, они тугоплавкие и нелетучие.

Учитель: Физические свойства веществ с атомной кристаллической решёткой те же, что и у веществ с ионной кристаллической решёткой, но часто в превосходной степени – очень твёрдые, очень прочные. Алмаз, у которого атомная кристаллическая решётка – самое твёрдое вещество из всех природных веществ. Он служит эталоном твёрдости, которая по 10-бальной системе оценивается высшим баллом 10.(Слайд 10). По этому типу кристаллической решётки вы сами внесёте необходимые сведения в таблицу, самостоятельно поработав с учебником.

Учитель: Рассмотрим 3-й тип кристаллической решётки, которая называется металлической. (Слайды 11,12) В узлах такой решётки находятся атомы и ионы, между которыми свободно перемещаются электроны, связывая их в единое целое.

Далее учащиеся по учебнику рассматривают модель металлической кристаллической решётки.

Такое внутреннее строение металлов и определяет их характерные физические свойства.

Учитель: Какие физические свойства металлов вы знаете? (ковкость, пластичность, электро- и теплопроводность, металлический блеск).

Учитель: На какие группы делятся все вещества по строению? (Слайд 12)

Рассмотрим тип кристаллической решётки, которой обладают такие хорошо известные нам вещества как вода, углекислый газ, кислород, азот и другие. Она называется молекулярной. (Слайд14)

– Какие частицы располагаются в узлах этой решётки?

Далее учащиеся по учебнику рассматривают модель молекулярной кристаллической решётки.

Химическая связь в молекулах, которые находятся в узлах решётки, может быть и ковалентная полярная, и ковалентная неполярная. Несмотря на то, что атомы внутри молекулы связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому вещества с молекулярной кристаллической решёткой имеют малую твердость, низкие температуры плавления и летучие. Когда газообразные или жидкие вещества при особых условиях превращаются в твёрдые, тогда у них появляется молекулярная кристаллическая решётка. Примерами таких веществ может быть твёрдая вода – лёд, твёрдый углекислый газ – сухой лёд. Такую решётку имеет нафталин, который применяют для защиты шерстяных изделий от моли.

– Какими свойствами молекулярной кристаллической решётки обусловлено применение нафталина? (летучестью). Как видим, молекулярную кристаллическую решетку могут иметь не только твердые простые вещества: благородные газы, H2,O2, N2, I2, O3, белый фосфор Р4, но и сложные: твердая вода, твердые хлороводород и сероводород. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза,сахар).

В узлах решеток находятся неполярные или полярные молекулы. Несмотря на то, что атомы внутри молекул связаны прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного взаимодействия.

Вывод: Вещества непрочные, имеют малую твердость, низкую температуру плавления, летучи.

Вопрос: Какой процесс называется возгонкой или сублимацией?

Ответ: Переход вещества из твердого агрегатного состояния сразу в газообразное, минуя жидкое, называется возгонкой или сублимацией.

Демонстрация опыта: возгонка йода

Потом учащиеся по очереди называют сведения, которые они записали в таблицу.

Кристаллические решетки, вид связи и свойства веществ.

Тип решетки Виды частиц в узлах решетки Вид связи
между частицами
Примеры веществ Физические свойства веществ
Ионная Ионы Ионная – связь прочная Соли, галогениды (IA, IIA),оксиды и гидроксиды типичных металлов Твердые, прочные, нелетучие, хрупкие, тугоплавкие, многие растворимы в воде, расплавы проводят электрический ток
Атомная Атомы 1. Ковалентная не полярная – связь очень прочная
2. Ковалентная полярная – связь очень прочная
Простые вещества: алмаз (C), графит (C) , бор (B), кремний (Si).
Сложные вещества: оксид алюминия (Al2O3), оксид кремния (IV) – SiO2
Очень твердые, очень тугоплавкие, прочные, нелетучие, не растворимы в воде
Молекулярная Молекулы Между молекулами – слабые силы
межмолекулярного притяжения, а вот
внутри молекул – прочная ковалентная связь
Твердые вещества при особых условиях, которые при обычных – газы или жидкости
2, Н2, Cl2, N2, Br2, H2O, CO2, HCl);
сера, белый фос фор, йод; органические вещества
Непрочные, летучие, легкоплавкие, способны к возгонке, имеют небольшую твердость
Металлическая Атом-ионы Металлическая – разной прочности Металлы и сплавы Ковкие, обладают блеском, пластичностью, тепло- и электропроводны

Учитель: Какой мы можем сделать вывод из проделанной работы по таблице?

Вывод 1: От типа кристаллической решётки зависят физические свойства веществ. Состав вещества → Вид химической связи → Тип кристаллической решетки → Свойства веществ. (Слайд 18).

Вопрос: Какой тип кристаллической решетки из рассмотренных выше не встречается в простых веществах?

Ответ: Ионные кристаллические решетки.

Вопрос: Какие кристаллические решетки характерны для простых веществ?

Ответ: Для простых веществ – металлов – металлическая кристаллическая решетка; для неметаллов – атомная или молекулярная.

Работа с Периодической системой Д.И. Менделеева.

Вопрос: Где в Периодической системе находятся элементы-металлы и почему? Элементы-неметаллы и почему?

Ответ: Если провести диагональ от бора до астата, то в нижнем левом углу от этой диагонали будут находиться элементы-металлы, т.к. на последнем энергетическом уровне они содержат от одного до трех электронов. Это элементы I A, II A, III A (кроме бора), а также олово и свинец, сурьма и все элементы побочных подгрупп.

Элементы-неметаллы находятся в верхнем правом углу от этой диагонали, т.к. на последнем энергетическом уровне содержат от четырех до восьми электронов. Это элементы IV A,V A, VI A, VII A, VIII A и бор.

Учитель: Давайте найдем элементы неметаллы, у которых простые вещества имеют атомную кристаллическую решетку (Ответ: С, В, Si) и молекулярную (Ответ: N, S, O, галогены и благородные газы)

Учитель: Сформулируйте вывод, как можно определить тип кристаллической решетки простого вещества в зависимости от положения элементов в Периодической системе Д.И.Менделеева.

Ответ: Для элементов-металлов, которые находятся в I A, II A, IIIA(кроме бора), а также олова и свинца, и всех элементов побочных подгрупп в простом веществе тип решетки-металлическая.

Для элементов-неметаллов IV A и бора в простом веществе кристаллическая решетка атомная; а у элементов V A, VI A, VII A, VIII A в простых веществах кристаллическая решетка молекулярная.

Продолжаем работать с заполненной таблицей.

Учитель: Посмотрите внимательно на таблицу. Какая закономерность прослеживается?

Внимательно слушаем ответы учеников, после чего вместе с классом делаем вывод. Вывод 2 (слайд 17)

4. Закрепление материала.

Вещества, имеющие молекулярную кристаллическую решётку, как правило:
a)Тугоплавки и хорошо растворимы в воде
б) Легкоплавки и летучи
в) Тверды и электропроводны
г) Теплопроводны и пластичны

Понятия «молекула» не применимо по отношению к структурной единице вещества:
a) Вода
б) Кислород
в) Алмаз
г) Озон

Атомная кристаллическая решётка характерна для:
a) Алюминия и графита
б) Серы и йода
в) Оксида кремния и хлорида натрия
г) Алмаза и бора

Если вещество хорошо растворимо в воде, имеет высокую температуру плавления, электропроводно, то его кристаллическая решётка:
а) Молекулярная
б) Атомная
в) Ионная
г) Металлическая

5. Рефлексия.

6. Домашнее задание.

Охарактеризуйте каждый вид кристаллической решётки по плану: Что в узлах кристаллической решётки, структурная единица → Тип химической связи между частицами узла → Силы взаимодействия между частицами кристалла → Физические свойства, обусловленные кристаллической решёткой → Агрегатное состояние вещества при обычных условиях → Примеры .

По формулам приведённых веществ: SiC, CS2, NaBr, C2H2 – определите тип кристаллической решётки(ионная, молекулярная) каждого соединения и на основе этого опишите предполагаемые физические свойства каждого из четырёх веществ.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: