Вакуоль у эукариот: состав растительных и животных клеток, строение и функции, типы вакуолей

Особенности строения и функции вакуоли, значение клеточного сока

Вакуоли — это большие пузырьки в цитоплазме клетки или полости, которые имеют ограничение в виде мембраны (тонопласта) и в большинстве случаев заполнены водным содержимым.

Говоря о строении вакуоли нужно сразу отметить, что пузыреобразные расширения эндоплазматической сети и везикулы комплекса Гольджи — то, из чего образуются вакуоли. Они есть во всех растительных и грибных клетках, в клетках многих протистов.

Множество небольших вакуоль образуются в клетках меристемы растений из пузыреобразных расширений эндоплазматической сети. Постепенно они увеличиваются в размерах и объединяются. Так образуется одна центральная вакуоль, которая занимает большую часть внутреннего содержимого клетки — а это от 70 до 90%. Вакуоль в животной клетке мельче.

Центральная вакуоль может быть пронизана тяжами цитоплазмы.

Мембрана или тонопласт — это то, что окружает вакуоль: она имеет толщину, как у мембраны эндоплазматической сети (4-6 нм). В отличие от нее, плазмалемма более толстая и плотная, отличается меньшей проницаемостью.

Клеточный сок

Клеточный сок — то, что заполняет вакуоль.

Он представляет собой водный раствор органических и неорганических веществ. Почти все они являются продуктами метаболизма протопласта: они могут образовываться и распадаться на протяжении жизни клетки.

Клеточный сок имеет концентрацию и химический состав, которые постоянно меняются. Они зависят от вида растения, органа, ткани и состояния, в котором находится клетка.

В клеточном соке в растворенном виде присутствуют:

  • соли;
  • сахара (глюкоза, фруктоза и сахароза);
  • органические кислоты (лимонная, уксусная, щавелевая, яблочная и др);
  • белки;
  • аминокислоты.

Все это — промежуточные продукты метаболизма, которые временно выводятся из обмена и изолируются при помощи тонопласта. То есть, это запасные вещества клеток.

Запасные вещества могут повторно использоваться в метаболизме. Помимо них в клеточном соке содержатся фенолы, танины или дубильные вещества, алкалоиды, антоцианы — они выведены из процесса обмена и, как следствие, изолированы от цитоплазмы.

Очень часто в клеточном соке можно обнаружить танины.

Еще танины можно найти в оболочках и цитоплазме клеток незрелых плодов, в оболочках семян, листьев, древесины и коры.

Если рассматривать строение и функции вакуолей некоторых растений, то можно обнаружить в них алкалоиды. К примеру, в:

  • в семенах кофе — кофеин;
  • в плодах мака — морфин;
  • в плодах белены — атропин и др.

Танины, токсические полифенолы и алкалоиды содержатся в растениях с определенной целью — выполнять защитную функцию. Они отпугивают травоядных животных и предотвращают, тем самым, поедание растений.

Строение и функции вакуолей предполагают скапливание отходов, которые являются конечными продуктами жизнедеятельности клетки.

Так в вакуолях клеток скапливается щавелевокислый кальций — он имеет вид кристаллов различной формы.

Многие растения содержат в своем клеточном соке пигменты. Самые распространенные пигменты — антоцианы. Благодаря им растение приобретает красную, пурпурную, синюю и фиолетовую окраски.

Если растение имеет желтый или кремовый цвет сока, это значит, что в нем содержатся близкие к антоцианам флавоны и флавонолы. Все эти пигменты отвечают за окраску лепестков (у роз, георгин, примул, фиалок и др), плодов, почек, листьев и иногда корнеплодов (у свеклы).

Кислотность среды влияет на цвет антоцианов:

  • он красный, если среда кислая;
  • фиолетовый, если среда нейтральная;
  • синий, если среда щелочная.

Кроме того, наблюдаются и переходящие оттенки.

Реакция клеточного сока склонна к частым изменениям — от кислой до слабокислой, а иногда и слабощелочной. Именно это является причиной соответствующих изменений цвета пигментов.

Во время цветения цветы некоторых растений, к примеру, медуницы, меняют окраску от розовой до синей.

Читайте также:
Крайние точки Евразии: в каком полушарии находится материк, какие океаны омывают его, население и карта

Также клеточный сок отдельных растений может содержать фитогормоны или регуляторы роста. Это физиологически активные вещества, ферменты и фитонциды.

После гибели клетки тонопласт и прочие мембраны утрачивают свою выборочную проницаемость. В результате ферменты, высвобождаясь из вакуоль, становятся причиной автолиза клетки.

Огромное значение вакуолей заключается в том, что они выполняют проводящую роль в поглощении воды клетками растений.

Вода поступает в вакуоль через тонопласт при помощи осмоса. В вакуоли клеточный сок является более концентрированным, чем цитоплазма, поэтому здесь вода давит на цитоплазму и, соответственно, клеточную оболочку.

В результате в клетке образуется тургорное давление, обеспечивается относительная жесткость растительных клеток. За счет этого давления клетки растягиваются в процессе роста.

Строение и функции вакуоли не всегда бывают стандартными. Вместо одной центральной вакуоли может быть несколько — это встречается в клетках запасающих тканей растений. В этих вакуолях скапливаются запасные питательные вещества:

Вакуоли: особенности, строение и функции

Название вакуоли происходит от латинского «vacuus», что значит «пустой». Но не нужно торопиться и относить вакуоли в разряд пустых и ненужных. Это небольшие или крупные полости, которые присутствуют в животных, растительных клетках и многоклеточных организмах.

Что такое вакуоли?

Вакуоль

Похожие на мелкие пузырьки или крупные полости, вакуоли образуются на участках эндоплазматической сети и комплекса Гольджи. От цитоплазмы они отделены мембраной, которая сохраняет их внутреннее содержимое: жидкость с растворенными в ней веществами.

Животные клетки содержат небольшие по размеру вакуоли, похожие на маленькие пузырьки. В растительных клетках расположена одна большая, центральная вакуоль, которая занимает значительный объем.

Строение

Вакуоль устроена довольно просто. Ее однослойная мембрана называется тонопластом. Внутри вакуоли находятся растворенные в воде

  • минеральные компоненты;
  • сахара;
  • органические кислоты;
  • пигменты (у растений);
  • углекислый газ и кислород;
  • другие продукты клеточного метаболизма.

Тонопласт не изолирует полностью внутреннее содержимое. Он содержит поры, через которые поступает вода и другие вещества. «Плотный пузырек» давит на цитоплазму, придавая клетки тургор, поддерживая ее в упругом состоянии.

На заметку: В молодых клетках содержится несколько небольших вакуолей в виде пузырьков. С возрастом они сливаются, и в клетке остается одна большая вакуоль, которая занимает много места: до 90% от общего объема клетки.

Функции

Вакуоли выполняют разнообразные функции. Это зависит от конкретной клетки, в которой они находятся. Если это одноклеточный организм – роль одна, растительная клетка – роль другая. Если обобщить, то вакуоль выполняет следующие задачи:

  1. Отложение питательных веществ и их изоляция. Расход – по потребности клетки.
  2. Резервуар для «отходов» – ненужных продуктов метаболизма. За счет ферментов в составе вакуолярного сока, вредные соединения разрушаются. Если клетка отмирает, то вакуоль лопается внутри клетки, а находящиеся в ней ферменты разрушают клеточную цитоплазму и всю структуру. Такой процесс носит название автолиза.
  3. Поддержание тургора или упругого состояния. Некоторые клетки способны увеличиваться в размерах и расти за счет растяжения.
  4. Регуляция водного баланса, поддержание концентрации внутриклеточной жидкости на постоянном уровне.
  5. В растительных клетках – наличие пигментов – красящих веществ, придающих тканям определенный окрас.
  6. В клетках одноклеточных водных организмов (амебы, инфузории-туфельки) содержатся сократительные вакуоли. Они регулируют баланс жидкости (осмотическое давление), выводя излишки воды наружу.
  7. Простейшие содержат пищеварительные вакуоли, где благодаря ферментам переваривается пища. У высших животных также есть пищеварительные вакуоли, но они содержатся в клетках-фагоцитах.

На заметку: Вакуоли выводят из клетки токсичные соединения, такие, как тяжелые металлы и гербициды. За счет внутренней, кислой среды эти органоиды расщепляют крупные макромолекулы, которые засоряют цитоплазму.

Читайте также:
Как появились красивые названия звезд: мифы и легенды, а также современные обозначения космических объектов

Основные функции вакуолей представлены в таблице:

В клетках плодов, семян, корневищ многих растений, и некоторых тканей животных, разрастаясь, занимает почти весь объём

  • Запас воды, питательных веществ, минералов и витаминов.

Расположена в клетках животных, губок, микроорганизмов. Быстро меняет объём и форму.

  • Обволакивание и переваривание органики с помощью ферментов.

В клетках животных и одноклеточных организмов. Отличается формой (у инфузорий — напоминает звёздочку).

  • Сбор и удаление отходов жизнедеятельности клетки, поддержание в клетке необходимого уровня осмотического давления.

Обычна для клеток растений с плавающими на воде листьями, ряски, плавучих микроводорослей наподобие спирулины, некоторых водных животных.

  • Накачка водородом и другими газами, с целью повышения плавучести (непотопляемости).

В клетках многих растений, насекомых, рыб (фугу), ядовитых животных. Содержит алкалоиды, полифенолы и прочее (пример: соланин зелёных картофельных клубней).

  • Накопление ядов, используемых растениями для защиты от поедания животными и насекомыми, а животными — для «внешнего пищеварения».

Вакуоль в животной клетке

Вакуоль в животной клетке, в растительной клетке, клетке гриба

Вакуоли – органоиды, типичные для растений и грибов, встречаются они и в животных клетках. Здесь они представлены небольшими пузырьками, «плавающими» в цитоплазме.

Их основная роль:

  • накопление и запас питательных компонентов;
  • содержание продуктов распада и их разложение;
  • переваривание крупных частиц или макромолекул.

В животных клетках вакуоли – это по сути лизосомы, которые содержат ферменты и способны к процессам фагоцитоза и пиноцитоза. Они переваривают питательные частицы и отмершие элементы клетки. Вакуоли запасают вещества, переваривают пищевые частицы и питательные растворы, а также регулируют содержание воды и солей.

Вакуоль в растительной клетке

В клетках растений вакуоль – важный по значению органоид. Она крупных размеров и занимает до80-90% от объема клетки. Растительный органоид:

  • поддерживает тургор и за счет растяжения клеточка растет;
  • транспортирует в цитоплазму необходимые компоненты;
  • переваривает за счет ферментов ненужные вещества;
  • содержит растительные пигменты, окрашивая ткани в зеленые, оранжевые, красные, желтые цвета и промежуточные оттенки;
  • у некоторых в составе вакуолей есть ядовитые вещества, которые защищают растение от поедания;
  • за счет питательных веществ органоиды участвуют в прорастании семян.

Клетка нуждается в вакуолиях. Этот органоид важен для пищеварения, водно-солевого обмена, детоксикации (очищения организма от токсинов), роста и развития клеток. Вакуоль – важная составная часть растительной клетки. Важна она и для простейших, грибов, и для многоклеточных организмов. Вакуоль не содержится в вирусах и фагах.

Лекция № 7. Эукариотическая клетка: строение и функции органоидов

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты ( «отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Аппарат Гольджи

Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Читайте также:
К какому классу относятся рыбы: признаки хрящевых и костных, названия видов

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.

Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

Читайте также:
Южная Америка: страны и столицы, их список и расположение на карте мира, население

Митохондрии

Строение митохондрии:
1 — наружная мембрана;
2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н + .

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

Строение пластид

Строение пластид: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н + . Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Читайте также:
Экологическая пирамида: правило построения и ее виды, трофическая пирамида и цепи питания

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

Строение рибосомы:
1 — большая субъединица; 2 — малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5–7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Клеточный центр

Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Читайте также:
Австралия: реки и другие водные объекты, основные течения, проблемы экологии

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

Перейти к лекции №6 «Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран»

Вакуоль, её особенности: строение, состав, функции

Вакуоль клетки

Вакуоль — это ёмкость внутри клетки, относящаяся к органоидам и используемая живым организмом для различных нужд. Обычно она имеет вид мешочка. Отделена от клетки единственной мембраной, именуемой тонопластом. Образуются вакуоли из тонопластовых пузырьков. Бывают у растений и животных, водорослей, грибов, бактерий, у вирусов и фагов их нет.

Состав вакуоли

Часто основной состав органоида — это раствор необходимых веществ, то есть клеточный сок.

Несмотря на различия животных и растительных организмов, их клеточный сок представлен схожими веществами.

  1. Вода (например, в клетках кактуса).
  2. Минеральные соли: хлориды, нитраты, фосфаты (полифосфаты у фотосинтезирующих бактерий), нитраты.
  3. Углеводы: моносахариды, дисахариды, крахмал (в клетках клубней картофеля), гликоген (у животных).
  4. Жиры (например, белый жир подкожной жировой клетчатки у человека), поли-β-оксимасляная кислота (у некоторых бактерий).
  5. Красители: меланин (в коже человека), танин и антоцианы (у растений).
  6. Заживляющие вещества, заделывающие рану в случае повреждения (например, латекс в клеточной паренхиме коры гевеи).
  7. Газы, накапливаемые для повышения плавучести и полезного использования. У эвглены зелёной, биология которой двойственна (животное в темноте и растение на свету), накапливается и расходуется переменно углекислый газ или кислород.

Это интересно: энергетический и пластический обмен — процессы в клетке.

Строение и функции

Функции Вакуоли

В некоторых органах многоклеточных организмов этот органоид бурно разрастается, вытесняя прочее содержимое клетки на самый её край. Например, в горбе верблюда после прихода в оазис постепенно накапливается смесь воды и жира — вакуоли увеличиваются, горб растёт, набухает, поднимается.

Заметны различия между растительными и животными органоидами. Вакуоль у растений часто единственная в клетке, но крупная и содержащая какие-либо запасы. В животной клетке их много, они мелкие и выполняют в основном выделительные и пищеварительные функции. Рассмотрим основные типы (таблица).

Тип вакуоли Строение, расположение Функции
Запасающая В клетках плодов, семян, корневищ многих растений, и некоторых тканей животных, разрастаясь, занимает почти весь объём Запас воды, питательных веществ, минералов и витаминов
Пищеварительная Расположена в клетках животных, губок, микроорганизмов. Быстро меняет объём и форму Обволакивание и переваривание органики с помощью ферментов
Сократительная (пульсирующая, выделительная) В клетках животных и одноклеточных организмов. Отличается формой (у инфузорий — напоминает звёздочку) Сбор и удаление отходов жизнедеятельности клетки, поддержание в клетке необходимого уровня осмотического давления
Аэросома (газовая) Обычна для клеток растений с плавающими на воде листьями, ряски, плавучих микроводорослей наподобие спирулины, некоторых водных животных Накачка водородом и другими газами, с целью повышения плавучести (непотопляемости)
Токсическая В клетках многих растений, насекомых, рыб (фугу), ядовитых животных. Содержит алкалоиды, полифенолы и прочее (пример: соланин зелёных картофельных клубней). Накопление ядов, используемых растениями для защиты от поедания животными и насекомыми, а животными — для «внешнего пищеварения».
Читайте также:
Туризм Европы: самые популярные туристические страны, курорты и промышленные города

Дополнительные сведения:

  • Сократительная (пульсирующая, выделительная) — её биология у одноклеточных сходна с почками и мочевым пузырём у млекопитающих.
  • Пищеварительная — этот органоид быстро эволюционирует, меняя размер и содержимое. Сначала он формируется вокруг захваченного пищевого комка, обычно имеющего кислый состав. Под воздействием впрыскиваемых ферментов он увеличивается, показатель кислотности меняется на щелочной. Во время переваривания часть веществ усваивается, всасываясь в клетку, размер уменьшается. Оставшиеся отходы удаляются через сократительную вакуоль или порошицу.
  • Выделяют и более узкоспециализированные органоиды, например, лизосомы — характерны для многоклеточных животных, содержат гидролитические ферменты, путём фагоцитоза, пиноцитоза утилизируют чужие бактерии, собственные отмершие органы и ткани.

Симбиоз двух организмов

Симбиоз в Вакуоли

Симбиоз одного живого существа с другими организмами, находящимися в его пищеварительной вакуоли, рассматривается как один из важных элементов эволюции. Особенность одноклеточных и мелких эукариот: для них обычны специализированные органоиды, по нескольку одновременно, с частой сменой, сочетанием, изменением функций.

Например, многие крупные бактерии, актинии, грибы, морские слизни практикуют пищеварительный захват микроводорослей. При этом переваривание водорослей может притормозиться со вступлением организма в симбиотическую связь с ними.

Устойчивый симбиоз гриба с водорослями внутри его органоидов привёл к появлению лишайников. Эвглена зелёная, как принято считать, имеет в качестве хлоропластов хламидомонад, эволюционировавших внутри её организма. Плавучий папоротник азолла образует заполненные слизью полости, и когда в них попадает сине-зелёная водоросль анабена (Anabaena azollae), полость закрывается, образуя вакуоль для проживания в ней этой водоросли.

Вакуоль

Вакуоль представляет собой полость, отграниченную от цитоплазмы клетки мембраной. Она заполнена клеточным соком и может выполнять различные функции. Подобные органоиды встречаются в клетках всех живых организмов, за исключением вирусов и фагов. О том, для чего нужна эта органелла, как выглядит, что находится в вакуоли у растений и животных, расскажем в статье.

Строение и функции вакуоли

Главный компонент вакуоли — клеточный сок, заполняющий внутренне пространство органоида. Основной состав содержимого вакуолей схож для клеток различных организмов. Клеточный сок состоит из:

  • воды;
  • минеральных солей: хлоридов, фосфатов, нитратов;
  • углеводов (в том числе крахмал (у растений), гликоген (у животных);
  • жиров;
  • пигментов (красящих веществ);
  • веществ, восстанавливающих целостность структуры при повреждении;
  • газов, расходуемых по мере необходимости.

Не во всех вакуолях и не всегда отмечается наличие всех причисленных компонентов, но схожесть состава клеточного сока растений и животных доказана. Однако вакуоли у животных и растений различаются, в первую очередь размерами, и имеют другие особенности в строении и функциях.

Растительная клетка

Рис. 1. Растительная клетка.

На вопрос, есть ли в животной клетке вакуоль, ответ утвердительный. Да, такой органоид имеется и выполняет важные функции.

Вакуоли в растительной клетке максимально заполнены клеточным соком, поэтому органелла, как правило, единственная, но большая, ею занята вся центральная часть клетки, она служит резервуаром для запасных веществ. Клетки животных содержат много мелких вакуолей, отвечающих за пищеварение и выделение.

Читайте также:
Ноги пауков, разновидности конечностей, виды членистоногих в России, ядовитые особи

Животная клетка

Рис. 2. Животная клетка.

Типы вакуолей

Основные типы вакуолей, встречающихся в клетках живых организмов, строение и выполняемые ими функции представлены в таблице.

В клетках плодов, семян, видоизменённых подземных побегов многих растений, в специализированных тканях животных. Органелла разрастается, заполняя практически весь объём

Запасает воду, питательные вещества, витамины и минералы

Характерна для клеток животных, микроорганизмов, способна быстро менять объем и форму

Переваривание попадающей в её полость органики за счёт содержащихся в клеточном соке ферментов

Характерна для животных клеток, одноклеточных организмов. Легко распознаётся по форме

Сбор и удаление продуктов жизнедеятельности на клеточном уровне, обеспечение нормального тургора (осмотического давления) в клетке

Аэросома (наполненная газом)

Характерна для растений с плавучими органами, некоторых животных, обитающих в воде

Накопление водорода и других газов с целью улучшения плавучести

Характерна для клеток растений и животных, защищающихся с помощью яда и использующих токсины для других целей

Накопление ядов (алкалоидов, полифенолов и пр.) с целью защиты от врагов, а также для «внешнего пищеварения», используемого некоторыми животными

Заметим, что аэросомы и токсические вакуоли можно отнести к запасающим органоидам со специфическим использованием накопленных веществ.

Сократительная (выделительная) вакуоль инфузорий напоминает формой звёздочку. Биология этого органоида походит на почки и мочевой пузырь млекопитающих.

Инфузория

Рис. 3. Инфузория.

Кратко о том, какие признаки имеют вакуоли, каково их строение и функции, можно рассказать в докладе на уроке биологии в 9 классе.

Что мы узнали?

Вакуоли встречаются в клетках почти всех живых организмов, они выполняют различные функции: запасающую, выделительную, пищеварительную. Вакуоли имеют форму пузырьков различного размера и формы, наполненных клеточным соком. В растительных клетках они обычно более крупные, чем в животных, чаще выполняют запасающую функцию. Вакуоли участвуют в регуляции осмотического давления внутри клеток, обменных процессах.

Вакуоль: значение, функции и типы вакуолей в клетках

Вакуоль – это мембраносвязанная органелла, которая присутствует в клетках растений и грибов, а также в некоторых клетках животных и бактерий

Клеточная структура растений

Вакуоль — это мембраносвязанная органелла, которая присутствует в клетках растений и грибов, а также в некоторых клетках протистов (эукариотов), животных и бактерий. Вакуоли — это, по существу, закрытые отсеки, которые заполнены водой, содержащей неорганические и органические молекулы, включая ферменты в растворе, хотя в некоторых случаях они могут содержать твердые вещества, которые были поглощены.

Вакуоли образуются в результате слияния нескольких мембранных везикул и фактически являются их более крупными формами. Органелла не имеет основной формы или размера; ее структура изменяется в соответствии с требованиями клетки.

Открытие

Сократительные вакуоли («звезды») были впервые обнаружены Спалланцани (1776) у простейших, хотя и ошибочно приняты за органы дыхания. Дюжарден (1841) назвал эти «звезды» вакуолями. В 1842 году Шлейден применил термин для растительных клеток, чтобы отличить структуру с клеточным соком от остальной протоплазмы.

В 1885 году де Фриз назвал вакуольную мембрану тонопластом.

Функция вакуолей

Функция и значение вакуолей сильно варьируют в зависимости от типа клеток, в которых они присутствуют, занимая гораздо большее место в клетках растений, грибов и некоторых протистов, чем у животных и бактерий. В общем случае функции вакуоли включают в себя:

  • Изолирующие материалы, которые могут быть вредными или представлять угрозу для клетки
    Содержащие отходы
    Содержание воды в растительных клетках
    Поддержание внутреннего гидростатического давления или тургора внутри клетки
    Поддержание кислотного внутреннего рН
    Содержащие малые молекулы
    Экспорт нежелательных веществ из клетки
    Позволяет растениям поддерживать такие структуры как листья и цветы за счет давления центральной вакуоли
    Увеличиваясь в размерах, позволяет прорастающему растению или его органам (например, листьям) расти очень быстро и расходовать в основном только воду.
    В семенах накопленные белки, необходимые для прорастания, хранятся в «белковых телах», которые представляют собой модифицированные вакуоли.
Читайте также:
Функции клеточной мембраны: строение цитоплазматической оболочки и активный транспорт веществ

Вакуоли также играют важную роль в аутофагии, поддерживая баланс между биогенезом (производством) и деградацией (или оборотом) многих веществ и клеточных структур в определенных организмах. Они также помогают в лизисе и утилизации неправильно свернутых белков, которые начали накапливаться в клетке.

Томас Боллер и другие предположили, что вакуоль участвует в разрушении вторгающихся бактерий, а Роберт Б. Меллор предположил, что органоспецифические формы играют роль в «жилье» симбиотических бактерий. У протистов вакуоли выполняют дополнительную функцию хранения пищи, которая была поглощена организмом, и помогают в процессе пищеварения и утилизации отходов для клетки.

В клетках животных вакуоли выполняют в основном подчиненную роль, помогая в более крупных процессах экзоцитоза и эндоцитоза.

Животные вакуоли меньше, чем их растительные аналоги, но также обычно больше по количеству. Есть также животные клетки, которые не имеют вакуолей.

Экзоцитоз — это процесс экструзии белков и липидов из клетки. Эти вещества всасываются в секреторные гранулы в аппарате Гольджи, прежде чем транспортироваться к клеточной мембране и секретироваться во внеклеточную среду. В этом качестве вакуоли представляют собой просто везикулы — хранилища, которые позволяют удерживать, транспортировать и утилизировать выбранные белки и липиды во внеклеточную среду клетки.

Эндоцитоз является обратной стороной экзоцитоза и может протекать в различных формах. Фагоцитоз («поедание клеток») — это процесс, при котором бактерии, мертвые ткани или другие частицы материала, видимые под микроскопом, поглощаются клетками. Материал вступает в контакт с клеточной мембраной, которая затем инвагинирует.

Инвагинация прекращается, оставляя поглощенный материал в вакуоле, заключенном в мембрану, и клеточную мембрану нетронутой. Пиноцитоз («клеточное питье») — это, по сути, тот же процесс, с той разницей, что проглоченные вещества находятся в растворе и не видны под микроскопом.Фагоцитоз и пиноцитоз осуществляются совместно с лизосомами, которые завершают расщепление поглощенного материала.

Компоненты типичной животной клетки:
1. Ядрышко
2. Ядрo
3. Рибосома (точки в составе 5)
4. Везикула
5. Грубый эндоплазматический ретикулум
6. Аппарат Гольджи (или тело Гольджи)
7. Цитоскелет
8. Гладкий эндоплазматический ретикулум
9. Митохондрия
10. Вакуоль
11. Цитозоль (жидкость, содержащая органеллы; с которой состоит цитоплазма)
12. Лизосома
13. Центросома
14. Клеточная мембрана

Типы вакуолей

Газовые вакуоли

Газовые пузырьки, также известные как газовые вакуоли, представляют собой наночастицы, которые свободно проницаемы для газа и встречаются в основном у цианобактерий, но также встречаются у других видов бактерий и некоторых архей.

Газовые пузырьки позволяют бактериям контролировать свою плавучесть. Они образуются, когда небольшие биконические структуры вырастают, образуя веретена. Стенки пузырьков состоят из гидрофобного газового везикулярного белка А (GvpA), который образует цилиндрическую полую белковую структуру, заполняющуюся газом. Небольшие отклонения в аминокислотной последовательности вызывают изменения в морфологии газового пузырька, например, GvpC — это более крупный белок.

Центральные вакуоли

Большинство зрелых растительных клеток имеют одну большую вакуоль, которая обычно занимает более 30% объема клетки, и которая может занимать до 80% объема для определенных типов клеток и условий.Нити цитоплазмы часто проходят через вакуоль.

Вакуоль окружена мембраной, называемой тонопластом и заполнена клеточным соком. Также называемый вакуолярной мембраной, тонопласт представляет собой цитоплазматическую мембрану, окружающую вакуоль, отделяющую вакуолярное содержимое от цитоплазмы клетки. Как мембрана, она в основном участвует в регулировании движения ионов вокруг клетки и выделении материалов, которые могут быть вредными или представлять угрозу для клетки.

Читайте также:
Великие озёра Северной Америки: названия, где находятся на карте большие озера

Перенос протонов из цитозоля в вакуоль стабилизирует рН цитоплазмы, делая внутреннюю часть вакуоли более кислой, создавая движущую силу протонов, которую клетка может использовать для транспортировки питательных веществ в вакуоль или из нее. Низкий рН вакуоли также позволяет действовать деградирующим ферментам.

Хотя одиночные большие вакуоли наиболее распространены, размер и количество вакуолей могут варьировать в различных тканях и стадиях развития. Например, развивающиеся клетки в меристемах содержат маленькие провакуолы, а клетки сосудистого камбия имеют много маленьких вакуолей зимой и одну большую летом.

Помимо хранения, основная роль центральной вакуоли заключается в поддержании давления тургора на клеточную стенку. Белки, содержащиеся в тонопласте (аквапорины), управляют потоком воды в вакуоль и из нее посредством активного транспорта, перекачивая ионы калия (К+) внутрь вакуоли и из нее.

Благодаря осмосу вода будет диффундировать в вакуоль, оказывая давление на клеточную стенку. Если потеря воды приводит к значительному снижению тургорного давления, клетка начинает плазмолитизироваться.

Давление тургора, оказываемое вакуолями, также необходимо для клеточного удлинения: поскольку клеточная стенка частично разрушается под действием экспансинов, менее жесткая стенка расширяется под давлением, идущим изнутри вакуоли. Давление тургора, оказываемое вакуолем, также необходимо для поддержания растений в вертикальном положении.

Другая функция центральной вакуоли заключается в том, что она толкает все содержимое цитоплазмы клетки к клеточной мембране и таким образом удерживает хлоропласты ближе к свету. Большинство растений хранят химические вещества в вакуоли, которые вступают в реакцию с химическими веществами в цитозоле. Если клетка разрушена, например, травоядным, то эти два химических вещества могут вступать в реакцию, образуя токсичные химические вещества. В чесноке аллиин и фермент аллииназа обычно разделяются, но образуют аллицин, если вакуоль нарушена. Аналогичная реакция отвечает за образование syn-propanethial-S-оксида при резке лука.

Вакуоли в клетках грибов выполняют те же функции, что и в растениях, и на каждую клетку может приходиться более одной вакуоли. В дрожжевых клетках вакуоль представляет собой динамическую структуру, способную быстро изменять свою морфологию. Они участвуют во многих процессах, включая гомеостаз клеточного рН и концентрацию ионов, осморегуляцию, накопление аминокислот и полифосфатов и деградационные процессы. Токсичные ионы, такие как стронций, кобальт и свинец транспортируются в вакуоль, чтобы изолировать их от остальной части клетки.

Сократительные вакуоли

Сократительные вакуоли — это специализированная осморегуляторная органелла, которая присутствует у многих свободноживущих эукариотов. Сократительная вакуоль является частью комплекса сократительной вакуоли, который включает в себя радиальные плечи и губку.

Сократительный вакуольный комплекс работает периодически, чтобы удалить избыток воды и ионов из клетки, чтобы сбалансировать поток воды в клетку. Когда сократительная вакуоль медленно поглощает воду, сократительная вакуоль увеличивается, это называется диастолой, и когда она достигает своего порога, центральная вакуоль сокращается, а затем периодически сокращается (систола), чтобы высвободить воду.]

Пищевые вакуоли

Пищевые вакуоли (также называемые пищеварительными вакуолями — это органеллы, обнаруженные в инфузориях, и Plasmodium falciparum, простейший паразит, вызывающий малярию.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: