Плазматическая мембрана: основные свойства, строение и функции плазмолеммы

7.Плазмолемма: строение, химический состав, функции:

Плазмолемма (plasmalemma), или внешняя клеточная мембрана, среди различных клеточных мембран занимает особое место. Это поверхностная периферическая структура, не только ограничивающая клетку снаружи, но и обеспечивающая ее непосредственную связь с внеклеточной средой, а следовательно, и со всеми веществами и стимулами, воздействующими на клетку. Химический состав плазмолеммы. Основу плазмолеммы составляет липопротеиновый комплекс. Она имеет толщину около 10 нм и, таким образом,является самой толстой из клеточных мембран. Основу строения плазмолеммы составляет двойной слой липидных молекул билипидная мембрана, в которую местами включены молекулы белков, также имеется надмембранный слой гликокаликс, структурно связанный с белками и липидами билипидной мембраны, и в некоторых клетках имеется подмембранный слой.

Строение билипидной мембраны:Каждый монослой ее образован в основном молекулами фосфолипидов и, частично, холестерина. При этом в каждой липидной молекуле различают две части: гидрофильную головку и гидрофобные хвосты. Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки билипидного слоя соприкасаются с внешней или внутренней средой. Билипидная мембрана, а точнее ее глубокий гидрофобный слой, выполняет барьерную функцию, препятствуя проникновению воды и растворенных в ней веществ, а также крупных молекул и частиц.

Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя.

По локализации в мембране белки подразделяются на:

интегральные пронизывают всю толщу билипидного слоя;

полуинтегральные включающиеся только в монослой липидов (наружный или внутренний);

прилежащие к мембране, но не встроенные в нее.

Функции плазмолеммы. Эта мембрана выполняет ряд важнейших клеточных функций, ведущими из которых являются функция р а з г р а н и ч е н и я цитоплазмы с внешней средой, функции р е ц е п ц и и и т р а н с п о р т а различных веществ как внутрь клетки, так и из нее.

По выполняемой функции белки плазмолеммы подразделяются на:

Находящиеся на внешней поверхности плазмолеммы белки, в также гидрофильные головки липидов обычно связаны цепочками углеводов и образуют сложные полимерные молекулы гликопротеиды и гликолипиды. Именно эти макромолекулы и составляют надмембранный слой — гликокаликс. В неделящейся клетке имеется подмембранный слой, образованный микротрубочками и микрофиламентами.

Значительная часть поверхностных гликопротеидов и гликолипидов выполняют в норме рецепторные функции, воспринимают гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ и тем самым оказывают влияние на функции клеток. Клеточные рецепторы, а возможно и другие мембранные белки, благодаря своей химической и пространственной специфичности, придают специфичность данному типу клеток данного организма и составляюттрансплантационные антигеныилиантигены гистосовместимости.

Помимо барьерной функции, предохраняющей внутреннюю среду клетки, плазмолемма выполняет транспортные функции, обеспечивающие обмен клетки с окружающей средой.

Различают следующие способы транспорта веществ:

пассивный транспорт способ диффузии веществ через плазмолемму (ионов, некоторых низкомолекулярных веществ) без затраты энергии;

активный транспорт веществ с помощью белков-переносчиков с затратой энергии (аминокислот, нуклеотидов и других);

везикулярный транспорт через посредство везикул (пузырьков), который подразделяется на эндоцитоз транспорт веществ в клетку, и экзоцитозтранспорт веществ из клетки.

В свою очередь эндоцитоз подразделяется на:

фагоцитоз захват и перемещение в клетку крупных частиц (клеток или фрагментов, бактерий, макромолекул и так далее);

пиноцитоз перенос воды и небольших молекул.

Процесс фагоцитоза подразделяется несколько фаз:

адгезия (прилипание) объекта к цитолемме фагоцитирующей клетки;

поглощение объекта путем образования вначале углубления (инвагинации), а затем и образования пузырьков — фагосомы и передвижения ее в гиалоплазму

Характеристика надмембранного слоя (гликокаликса) : сложные полимерные макромолекулы, образованные цепочками углеводов, связанными с находящимися на внешней поверхности плазмолеммы белками и гидрофильными головками липидов. Значительная часть поверхностных гликопротеидов и гликолипидов выполняет в норме рецепторные функции. Характеристика подмембранного слоя клеточной оболочки: Образован периферическим (кортикальным) слоем цитоплазмы и содержащимися в нём элементами цитоскелета клетки, включающим актиновые микрофиламенты, промежуточные филаменты и микротрубочки. Сокращение сети микрофиламентов, связанных с белками плазмолеммы, способствует формированию псевдоподий и выростов цитоплазмы, перемещению клетки в пространстве.

Читайте также:
Понятие фототрофа в биологии, примеры микроорганизмов, тип питания бактерий

8.Функциональная и структурная характеристика различных видов соединений. Простые соединения. Сложные соединения: плотные, соединения, щелевые соединения (нексусы), промежуточные соединения, десмосомы, пальцевидные соединения.

Межклеточные соединения делятся на п р о с т ы е и с л о ж н ы е . Простое межклеточное соединение— сближение плазмолемм соседних клеток на расстояние 15—20 нм (рис. 8). При этом происходит взаимодействие слоев гликокаликса соседних клеток. Гликопротеиды соседних клеток при образовании простого контакта «узнают» клетки одного типа. Наличие этих белков-рецепторов (кадгерины, интегрины и др.) характерно для определенных тканей. Они реагируют только с соответствующими им клетками.

Пальцевидные соединения (интердигитации) образуются за счет взаимной инвагинации (впячивания) обеих плазмолемм в начале в одном, а затем в другом. Это один из трех видов контактов между кардиомиоцитами.

Сложные межклеточные соединения представляют собой небольшие парные специализированные участки плазматических мембран двух соседних клеток. Они подразделяются на запирающие (изолирующие), сцепляющие (заякоривающие) и коммуникационные (объединяющие) контакты. К з а п и р а ю щ и м (изолирующим) относится плотный контакт . В этом соединении принимают участие специальные интегральные белки, расположенные на поверхности соседних клеток, образующие подобие ячеистой сети.Эта ячеистая сеть окружает в виде пояска весь периметр клетки, соединяясь с такой же сетью на поверхности соседних клеток. Эта область непроницаема для макромолекул и ионов и, следовательно, она запирает, отграничивает межклеточные щели (и вместе с ними собственно внутреннюю среду организма) от внешней среды. Этот тип соединений характерен для клеток однослойных эпителиев и эндотелия. К с ц е п л я ю щ и м , или заякоривающим, соединениям относятся адгезивный (сцепляющий) поясок и десмосомы. Общим для этой группы соединений является то, что к участкам плазматических мембран со стороны цитоплазмы подходят фибриллярные элементы цитоскелета, которые как бы заякориваются на их поверхности. Адгезивный поясок(промежуточный контакт)-опоясывает апикальную часть клетки однослойных эпителиев.Клетки связаны интегральными гликопротеидами,к которым примыкает слой примембранных белков.

Факальный контакт характерен для фибробластов.Соединяется не с соседней клеткой,а с элементами внеклеточного субстрата.В образовании этого контакта участвуют микрофиламенты.

Десмосомы-парные структуры,диаметр-0,5 мкм.Прилежит слой белков.В состав входят десмоплакины.С внешней стороны плазмолеммы соединяются с помощью десмоглеинов. Функция:механическая связь между клетками.(В клетках эпителиев,сердечных и гладких мышц)

Полудесмосомы-связь эпителиальных клеток с базалбной мембраной.

Коммуникационные соединения(щелевые контакты и синапсы):

Щелевые контакты(нексусы)- 0,5-3 мкм.В структуре плазмолемм соседних клеток располагаются коннексоны(Все ткани).Функция:перенос ионов и мелких молекул от клетки к клетке.

Синапсы-характерны для нервной ткани.Встречаются между двумя нейронами.Участки контактов двух клеток,специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому.

Строение мембран клетки и типы транспорта веществ через плазматическую мембрану

Довольно сложное строение мембран — важнейшая особенность эукариотических клеток.

Мембраны клетки находятся вокруг цитоплазмы, ядра, митохондрий и пластид. С их помощью образуются лабиринты эндоплазматической сети (ретикулума) и кучка сплющенных пузырьков, формирующих комплекс Гольджи. Мембраны также окружают большие вакуоли, лизосомы и пероксисомы.

Структуры, окруженные мембранами, соответствуют определенным компрантментам — они принимают участие в определенных метаболических процессах и циклах. Отдельные химические реакции происходят на самих мембранах. Речь идет о световой реакции фотосинтеза в хлоропластах и окислительном фосфорилировании в процессе дыхания в митохондриях. Строение мембраны клетки невозможно представить без рецепторных участков, которые отвечают за распознавание внешних стимулов, в частности, гормонов и прочих химических веществ, поступающих из вне или других частей организма.

Сохранение различий между содержимым клетки и внешней средой — заслуга плазматической мембраны, которая окружает каждую клетку. Поэтому существование клетки без мембраны невозможно.

Плазматическая мембрана (плазмалема) — наиболее постоянная, основная и универсальная для всех типов клеток система поверхностного аппарата.

По своему строению плазматическая мембрана — тонкая (от 6 до 10 нм), но плотная пленка, покрывающая все клетку, образованная упорядоченно расположенными молекулами белков и фосфолипидов. Нековалентные связи удерживают их вместе.

Плазматическая мембрана состоит из двух рядов липидов, молекулы которых располагаются таким образом, что неполярные гидрофобные концы находятся в глубине мембраны, а полярные гидрофильные концы — направлены на внешнюю и внутреннюю среду.

Читайте также:
Биология борьбы за существование и ее виды: причины и наиболее яркие примеры

Липидный слой не является сплошным: отдельные места мембраны пронизаны белковыми молекулами, которые образуют гидрофильные поры. Через эти поры проходят водорастворимые вещества. Другие молекулы белка размещаются на внешней и внутренней сторонах мембраны.

На поверхности всех эукариотических клеток есть углеводы, которые, в основном, ковалентно связаны с мембранными белками (гликопротеидами), но иногда — с липидами (гликолипидами). Масса углеводов в плазматической мембране — от 2 до 10%.

Плазматические мембраны клетки — это подвижные структуры. Молекулы белков, липидов, полисахаридов, ионы кальция, калия, натрия и другие вещества — основная составляющая мембраны клетки. Эти вещества способны быстро перемещаться в плоскости мембраны и менять в ней свое расположение. Миграция всех этих веществ происходит при помощи диффузии или путем поглощения кислорода.

Также вне зависимости от строения плазматические мембраны отличаются динамичностью — в случае повреждения они способны к быстрому восстановлению. Кроме того, они могут растягиваться и сжиматься при активном движении клеток.

В различных видах клеток мембраны различаются по:

  • химическому составу;
  • содержанию в них белков, липидов, гликопротеидов;
  • характеру рецепторов, которые содержатся в мембранах.

Отсюда и индивидуальность типов клеток, определяемая гликопротеидами. Факторы внешней среды распознаются разветвленными цепями гликопротеидов, выступающими над клеточной мембраной, через реакции клеток на их действие.

Яйцеклетка и сперматозоид, образующие одно целое, могут узнавать друг друга по гликопротеидам на поверхности клетки. Взаимное узнавание является важным этапом, предшествующим процесс оплодотворение. Это явление наблюдается в ходе дифференциации тканей. При помощи распознающих участков на плазмалеме клетки, похожие по строению, могут правильно ориентироваться относительно друг друга и образовывать, в результате, ткани.

Узнавание тесно связано с регулированием транспорта молекул и ионов через мембрану и иммунологическим ответом, в котором гликопротеиды играют роль антигенов.

Так функционирование сахаров осуществляется в виде информационных молекул — похоже, как у белков и нуклеиновых кислот.

В строении мембран выделяют специфические рецепторы, транспортирующие электроны, ферментные белки. Благодаря белкам обеспечивается транспорт некоторых молекул в клетку и обратно, осуществляется структурная связь цитоскелета с клеточными мембранами. Белки выполняют функции рецепторов — они получают или преобразуют химические сигналы окружающей среды.

Еще одна жизненно важная функция плазматической мембраны, обусловленная ее четкой структурной организацией и упорядоченностью — полупроницаемость или способность выборочно пропускать в клетку и выпускать из нее разнообразные молекулы и ионы. Все это формирует в клетке определенную концентрацию ионов и обеспечивает процесс осмоса.

Мембраны, похожие по строению и являющиеся основными структурными элементами клетки, ограничивают почти все ее органеллы. Это не просто физические мембраны, а динамически функциональная поверхность. На мембранах органелл происходят различные биохимические процессы:

  • поглощение неорганических и органических веществ;
  • синтез АТФ;
  • превращение энергии квантов света в ходе фотосинтеза и др.

Транспорт веществ через плазматическую мембрану

Основная функция плазматической мембраны — регулирование обмена различными веществами, который происходит между клеткой и окружающей средой.

Есть 4 варианта поступления веществ в клетку и выхода из нее:

  1. Диффузия.
  2. Активный транспорт.
  3. Эндо- и экзоцитоз.
  4. Осмос.

В растворах перемещение растворенных веществ происходит в следующем направлении: из участка, где отмечается высокая концентрация, в участок, где отмечается низкая концентрация. Поток веществ в сторону с меньшей концентрацией (транспорт по градиенту концентраций) сохраняется до момента выравнивания концентрации в обоих участках.

Диффузия

Диффузия или диффузное перемещение веществ — это перемещение веществ, на которое оказывает влияние градиент концентраций.

Размер молекулы и ее относительная растворимость в жирах определяют скорость диффузии через мембрану. Чем молекула меньше, тем она быстрее растворяется в липидах и легче диффундирует через мембрану.

Без проблем растворяются в липидном слое мембраны и проходят через нее, оказываясь с другой стороны, небольшие неполярные молекулы. Маленькие незаряженные молекулы, такие как этанол, углекислый газ, мочевина, быстро проходят через мембрану. А вот глюкоза, кислоты, глицерины и аминокислоты проходят через мембрану медленно.

Несмотря на то, что молекулы воды плохо растворяются в жирах, вода легко проходит через липидный слой. Все потому, молекулы воды небольших размеров.

Липидные слои плазматической мембраны являются серьезным препятствием для попадания в клетку для всех заряженных молекул (ионов). И их размер не имеет значения.

Читайте также:
Амёба как простейший организм: её строение, способ размножения, животное это или бактерия

Специфические белки отвечают за перенос различных полярных молекул (ионы, сахара, нуклеотиды, аминокислоты и прочие метаболиты) через клеточные мембраны. Эти белки получили название мембранных транспортных белков.

Определенный белок отвечает за транспорт каждого конкретного химического соединения. Специализированные транспортные белки могут соединяться с молекулой или ионом, не затрачивая на это энергию, то есть, пассивно, и транспортировать их через мембрану по градиенту концентрации.

Такой процесс получил название облегченной диффузии. Он является основным механизмом выборочной проницательности мембран.

Активный транспорт

В отличие от облегченной диффузии, активный транспорт веществ происходит против градиентов их концентрации. Осуществляется переход веществ из участка низкой концентрации в участок высокой концентрации. В этом случае без затрат энергии не обойтись (ее источником выступает АТФ): она используется для перенесения протонов или неорганических ионов через мембрану.

Все это можно продемонстрировать на примере. Расход энергии обеспечивает попадание катиона калия в клетки корня растения в условиях, когда его концентрация в почвенном растворе в 100 раз меньше, чем в клеточном соке. А вот катион натрия, который растению не особо нужен, может выводиться в окружающую среду даже в том случае, если его концентрация в почве, в которой находятся корни, достаточно высока.

Активное поглощение свойственно только ионам питательных элементов. Из этого следует, что клетка отличается определенной выборочной способностью к разным ионам. Прочие ионы попадают в клетку согласно градиенту их электрохимического потенциала и проницательности мембраны.

Эндоцитоз и экзоцитоз

Макромолекулы попадают внутрь клетки при помощи эндоцитоза. Речь идет о белках, полисахаридах, полинуклеотидах.

Есть 2 типа эндоцитоза:

  1. Фагоцитоз, основанный на поглощении твердых частичек. Клетки окружают капли жидкости с плотными частичками и втягивают их в цитоплазму. Там под действием ферментов происходит их расщепление до фрагментов, которые клетка может усвоить.
  2. Пиноцитоз, основанный на поглощении жидкостей. Процесс поглощения жидкостей похож на фагоцитоз. В месте, где капля и клетка касаются, образуется впячивание в виде канальца, который заполняется жидкостью. Далее происходит его отшнуровывание и попадание в цитоплазму — там мембранные стенки пузырька распадаются, и содержимое освобождается. В процессе пиноцитоза клетки могут поглощать и большие молекулы, и ионы, у которых нет возможности проникнуть через мембрану в силу маленьких размеров пор.

Фагоцитоз и пиноцитоз обеспечивают питание гетеротрофных протист, защитные реакции высших организмов (лейкоциты поглощают чужеродные частички) и транспорт веществ (в клетках почечных канальцев происходит всасывание белков из первичной мочи).

Экзоцитоз — процесс, противоположный эндоцитозу. В ходе него происходит вывод содержимого пузырька из клетки во внешнюю среду.

К примеру, клетки, продуцирующие гормон инсулин, запаковывают его в пузырьки внутри клетки. Потом пузырьки сливаются с плазматической мембраной и открываются наружу — происходит освобождение инсулина.

Осмос

Осмос — это диффузия воды через полупроницаемую мембрану, которая происходит за счет разницы или градиента концентраций внутри клетки и во внешней среде.

Путем осмоса клетка обычно поглощает воду.

При помещении клетки в гипотонический раствор, можно будет наблюдать градиент водного потенциала. Концентрации воды снаружи клетки превысит концентрацию внутри клетки. По этой причине поступление воды внутрь клетки происходит по градиенту ее собственной концентрации — мембрана выборочно пропускает только молекулы воды.

При помещении клетки в гипертонический раствор, который более концентрированный снаружи, вода будет выходить из клетки под действием осмотических сил.

В гипертоническом растворе происходит смарщивание эритроцитов, уменьшение вакуоли в мембране растительной клетки, отставание цитоплазмы от клеточной стенки (плазмолиз). Таким образом растения вянут.

Если будет действовать определенное внешнее давление (осмотическое давление), то движение воды через мембрану при наличии градиента концентрации можно остановить. Это объясняется желанием молекул воды пройти через полупроницаемую мембрану и уровнять концентрацию с обеих сторон мембраны.

Силы, потраченные на препятствование проникновению воды в раствор (наружу или внутрь) через полупроницаемую мембрану, зависят от концентрации раствора (чем она выше, тем больше нужно сил).

По этой причине осмотическое давление раствора с большей концентрацией выше, чем разбавленного. В первом случае раствор сильнее поглощает воду из окружающего раствора.

Читайте также:
Какие планеты Солнечной системы наиболее удалены от Солнца и Земли

Определить осмотическое давление можно путем определения числа частичек в одной единице объема растворителя.

Уровень концентрации ионов и молекул разнообразных соединений в растительной клетке будет выше, чем в окружающей ее естественной среде, в частности, в почве. Поэтому клетка развивает всасывающую силу, которая позволяет ей всасывать воду снаружи.

Происходит набухание клетки и формирование внутреннего гидростатического давления — оно направлено на клеточную стенку. Его называют тургорным давлением. Противоположность тургорного давления — механическое давление клеточной стенки (оболочки), направленное внутрь клетки, которое имеет такую же величину, что и тургорное.

Таким образом, мы рассмотрели строение и функции плазматической мембраны.

Строение и функции биологических мембран

Биологические мембраны – общее название функционально активных поверхностных структур, ограничивающих клетки (клеточные, или плазматические мембраны) и внутриклеточ­ные органеллы (мембраны митохондрий, ядер, лизосом, эндоплазматического ретикулума и др.). Они содержат в своем со­ставе липиды, белки, гетерогенные молекулы (гликопротеины, гликолипиды)и в зависимости от выполняемой функции много­численные минорные компоненты: коферменты, нуклеиновые кислоты, антиоксиданты, каротиноиды, неорганические ионы и т. п.

Согласованное функционирование мембранных систем – рецепторов, ферментов, транспортных механизмов – помогает поддерживать гомеостаз клетки и в то же время быстро реагировать на изменения внешней среды.

К основным функциям биологических мембран можно отнести:

· отделение клетки от окружающей среды и формирование внутриклеточных компартментов (отсеков);

· контроль и регулирование транспорта огромного многообразия веществ через мембраны;

· участие в обеспечении межклеточных взаимодействий, передаче внутрь клетки сигналов;

· преобразование энергии пищевых органических веществ в энергию химических связей молекул АТФ.

Молекулярная организация плазматической (клеточной) мембраны у всех клеток примерно одинакова: она состоит из двух слоев липидных молекул с множеством включенных в нее специфических белков. Одни мембранные белки обладают ферментативной активностью, тогда как другие связывают питательные вещества из окружающей среды и обеспечивают их перенос в клетку через мембраны. Мембранные белки различают по характеру связи с мембранными структурами. Одни белки, называемые внешними или периферическими, непрочно связаны с поверхностью мембраны, другие, называемые внутренними или интегральными, погружены внутрь мембраны. Периферические белки легко экстрагируются, тогда как интегральные белки могут быть выделены только при помощи детергенов или органических растворителей. На рис. 4 представлена структура плазматической мембраны.

Внешние, или плазматические, мембраны многих клеток, а также мембраны внутриклеточных органелл, например, митохондрий, хлоропластов удалось выделить в свободном виде и изучить их молекулярный состав. Во всех мембранах имеются полярные липиды в количестве, составляющем в зависимости от типа мембран от 20 до 80% ее массы, остальное приходится главным образом на долю белков. Так, в плазматических мембранах животных клеток количество белков и липидов, как правило, примерно одинаково; во внутренней митохондриальной мембране содержится около 80% белков и только 20% липидов, а в миелиновых мембранах клеток мозга наоборот, около 80% липидов и только 20% белков.

Рис. 4. Структура плазматической мембраны

Липидная часть мембран представляет собой смесь различного рода полярных липидов. Полярные липиды, к числу которых относятся фосфоглицеролипиды, сфинголипиды, гликолипиды не запасаются в жировых клетках, а встраиваются в клеточные мембраны, причем в строго определенных соотношениях.

Все полярные липиды в мембранах постоянно обновляются в процессе метаболизма, при нормальных условиях в клетке устанавливается динамическое стационарное состояние, при котором скорость синтеза липидов равна скорости их распада.

В мембранах животных клеток присутствуют в основном фосфоглицеролипиды и в меньшей степени сфинголипиды; триацилглицеролы обнаруживаются лишь в следовых количествах. Некоторые мембраны животных клеток, в особенности наружная плазматическая мембрана, содержит значительные количества холестерола и его эфиров (рис.5).

Рис.5. Мембранные липиды

В настоящее время общепринятой моделью строения мембран является жидкостно-мозаичная, предложенная в 1972 году С. Синджером и Дж. Николсоном.

Согласно ей белки можно уподобить айсбергам, плавающим в липидном море. Как уже указывалось выше, существуют 2 типа мембранных белков: интегральные и периферические. Интегральные белки пронизывают мембрану насквозь, они являются амфипатическими молекулами. Периферические белки не пронизывают мембрану и связаны с ней менее прочно. Основной непрерывной частью мембраны, то есть ее матриксом, служит полярный липидный бислой. При обычной для клетки температуре матрикс находится в жидком состоянии, что обеспечивается определенным соотношением между насыщенными и ненасыщенными жирными кислотами в гидрофобных хвостах полярных липидов.

Читайте также:
Как быстро находить проценты от числа, онлайн-калькулятор

Жидкостно-мозаичная модель предполагает также, что на поверхности расположенных в мембране интегральных белков имеются R-группы аминокислотных остатков (в основном гидрофобные группы, за счет которых белки как бы «растворяются» в центральной гидрофобной части бислоя). В то же время, на поверхности периферических, или внешних белков, имеются в основном гидрофильные R-группы, которые притягиваются к гидрофильным заряженным полярным головкам липидов за счет электростатических сил. Интегральные белки, а к ним относятся ферменты и транспортные белки, обладают активностью только в том случае, если находятся внутри гидрофобной части бислоя, где они приобретают необходимую для проявления активности пространственную конфигурацию (рис.6). Следует еще раз подчеркнуть, что ни между молекулами в бислое, ни между белками и липидами бислоя не образуется ковалентных связей.

Рис.6. Мембранные белки

Мембранные белки могут свободно перемещаться в латериальной плоскости. Периферические белки буквально плавают на поверхности бислойного «моря», а интегральные белки, подобно айсбергам, почти полностью погружены в углеводородный слой.

В большинстве своем мембраны ассиметричны, то есть имеют неравноценные стороны. Эта ассиметричность проявляется в следующем:

· во-первых, в том, что внутренняя и внешняя стороны плазматических мембран бактериальных и животных клеток различаются по составу полярных липидов. Так, например, внутренний липидный слой мембран эритроцитов человека содержит в основном фосфатидилэтаноламин и фосфатидилсерин, а внешний – фосфатидилхолин и сфингомиелин.

· во-вторых, некоторые транспортные системы в мембранах действуют только в одном направлении. Например, в мембранах эритроцитов имеется транспортная система («насос»), перекачивающая ионы Nа + из клетки в окружающую среду, а ионы К + – внутрь клетки за счет энергии, освобождающейся при гидролизе АТФ.

· в-третьих, на внешней поверхности плазматических мембран содержится очень большое число олигосахаридных группировок, представляющих собой головки гликолипидов и олигосахаридные боковые цепи гликопротеинов, тогда как на внутренней поверхности плазматической мембраны олигосахаридных группировок практически нет.

Ассиметричность биологических мембрам сохраняется за счет того, что перенос индивидуальных молекул фосфолипидов с одной стороны липидного бислоя на другую очень затруднен по энергетическим соображениям. Полярная молекула липида способна свободно перемещаться на своей стороне бислоя, но ограничена в возможности перескочить на другую сторону.

Подвижность липидов зависит от относительного содержания и типа присутствующих ненасыщенных жирных кислот. Углеводородная природа жирнокислотных цепей сообщает мембране свойства текучести, подвижности. В присутствии цис-ненасыщенных жирных кислот силы сцепления между цепями слабее, чем в случае одних насыщенных жирных кислот, и липиды сохраняют высокую подвижность и при низкой температуре.

На внешней стороне мембран имеются специфические распознающие участки, функция которых состоит в распознавании определенных молекулярных сигналов. Например, именно посредством мембраны некоторые бактерии воспринимают незначительные изменения концентрации питательного вещества, что стимулирует их движение к источнику пищи; это явление носит название хемотаксиса.

Мембраны различных клеток и внутриклеточных органелл обладают определенной специфичностью, обусловленной их строением, химическим составом и функциями. Выделяют следующие основные группы мембран у эукариотических организмов:

· плазматическая мембрана (наружная клеточная мембрана, плазмалемма),

· мембраны аппарата Гольджи, митохондрий, хлорпластов, миелиновых оболочек,

У прокариотических организмов помимо плазматической мембраны существуют внутрицитоплазматические мембранные образования, у гетеротрофных прокариот они называются мезосомами. Последние образуются впячиванием внуть наружной клеточной мембраны и в некоторых случаях сохраняют с ней связь.

Мембрана эритроцитов состоит из белков (50%), липидов (40%) и углеводов (10%). Основная часть углеводов (93%) связана с белками, остальная – с липидами. В мембране липиды расположены асимметрично в отличие от симметричного расположения в мицеллах. Например, кефалин находится преимущественно во внутреннем слое липидов. Такая асимметрия поддерживается, по-видимому, за счет поперечного перемещения фосфолипидов в мембране, осуществляемого с помощью мембранных белков и за счет энергии метаболизма. Во внутреннем слое эритроцитарной мембраны находятся в основном сфингомиелин, фосфатидилэтаноламин, фосфатидилсерин, в наружном слое – фосфатидилхолин. Мембрана эритроцитов содержит интегральный гликопротеин гликофорин, состоящий из 131 аминокислотного остатка и пронизывающий мембрану, и так называемый белок полосы 3, состоящий из 900 аминокислотных остатков. Углеводные компоненты гликофорина выполняют рецепторную функцию для вирусов гриппа, фитогемагглютининов, ряда гормонов. В эритроцитарной мембране обнаружен и другой интегральный белок, содержащий мало углеводов и пронизывающий мембрану. Его называют туннельным белком (компонент а), так как предполагают, что он образует канал для анионов. Периферическим белком, связанным с внутренней стороной эритроцитарной мембраны, является спектрин.

Миелиновые мембраны, окружающие аксоны нейронов, многослойны, в них присутствует большое количество липидов (около 80%, половина из них – фосфолипидов). Белки этих мембран важны для фиксации лежащих друг над другом мембранных солев.

Читайте также:
Крайние точки Евразии: в каком полушарии находится материк, какие океаны омывают его, население и карта

Мембраны хлоропластов. Хлоропласты покрыты двухслойной мембраной. Наружная мембрана имеет некоторое сходство с таковой у митохондрий. Помимо этой поверхностной мембраны в хлоропластах имеется внутренняя мембранная система – ламеллы. Ламеллы образуют или уплощенные пузырьки – тилакоиды, которые, располагаясь друг над другом, собираются в пачки (граны) или формируют мембранную систему стромы (ламеллы стромы). Ламеллы гран и стромы наружной стороне мембраны тилакоидов сосредоточены гидрофильные группировки, галакто- и сульфолипидов. Фитольная часть молекулы хлорофилла погружена в глобулу и находится в контакте в гидрофобными группами белков и липидов. Порфириновые ядра хлорофилла в основном локализованы между соприкасающимися мембранами тилакоидов гран.

Внутренняя (цитоплазматическая) мембрана бактерий по структуре сходна с внутренними мембранами хлоропластов и митохондрий. В ней локализованы ферменты дыхательной цепи, активного транспорта; ферменты, участвующие в образовании компонентов мембраны. Преобладающим компонентом бактериальных мембран являются белки: соотношение белок/липид (по массе) равно 3:1. Наружная мембрана грамотрицательных бактерий по сравнению с цитоплазматической содержит меньшее количество различных фосфолипидов и белков. Обе мембраны различаются по липидному составу. Во внешней мембране находятся белки, образующие поры для проникновения многих низкомолекулярных веществ. Характерным компонентом наружной мембраны является также специфический липополисахарид. Ряд белков наружной мембраны служит рецепторами для фагов.

Мембрана вирусов. Среди вирусов мембранные структуры характерны для содержащих нуклеокапсид, который состоит из белка и нуклеиновой кислоты. Это «ядро» вирусов окружено мембраной (оболочка). Она также состоит из двойного слоя липидов с включенными в него гликопротеинами, расположенными в основном на поверхности мембраны. У ряда вирусов (микровирусы) в мембраны входит 70-80% всех белков, остальные белки содержатся в нуклеокапсиде.

Таким образом, мембраны клеток представляют собой очень сложные структуры; составляющие их молекулярные комплексы образуют упорядоченную двумерную мозаику, что придает поверхности мембран биологическую специфичность.

Плазмалемма

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии — гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны — молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс

Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.

Содержание

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Функции биомембран

  • барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.
Читайте также:
Отряды класса млекопитающие: общая характеристика и главные признаки животных и зверей

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная — некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетке воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

  • маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Читайте также:
Доказательства равных треугольников: как доказать равенство углов, 3 признака равенства, подобие треугольников

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Плазматическая мембрана

Плазматическая мембрана (клеточная мембрана) – это слой молекул, который покрывает клетку и отделяет внешний мир, пропуская внутрь и наружу определённые молекулы. Существуют различные модели, описывающие устройство мембраны, на данный момент принята жидкостно-мозаичная модель, предложенная Зингером и Николсоном в 1972 году.

Жидкостно-мозаичная модель

Жидкостно-мозаичная модель подразумевает состав плазматической мембраны из двух рядов фосфолипидов с множественными включениями белков. Находящиеся на внутренней и внешней поверхности называются периферическими протеинами, расположенные внутри слоя – интегральные протеины. Иногда к белкам и жирам присоединяются углеводы, которые в сумме образуют гликопротеины и гликолипиды соответственно.

жидкостно-мозаичная модель плазматической мембраны

Изображение 1. Жидкостно-мозаичная модель плазматической мембраны. Белок-носитель захватывает элемент из внешней среды. Белки-каналы пропускают внутрь клетки определённые вещества. Фосфолипиды создают устойчивый барьер между внутренней средой клетки и внешней средой

Некоторые мембраны включают в себя молекулы холестерина. Небольшое количество у мембран митохондрий, в то время как некоторые мембраны на половину состоят из холестерина. Холестерин обеспечивает большую изменчивость и прочность фосфолипидного слоя, но уменьшает количество проходящих жидкостей растворимых в воде.

Большое количество белков в фосфолипидном слое образует протеиновую мозайку. Некоторые из пограничных белков участвуют в перемещении веществ через мембрану, поэтому носят название транспортных белков. Транспортные белки бывают двух типов – протеиновые каналы, образующие поры, и белки-носители, переносящие вещества через мембрану.

Все мембраны клетки, включая мембраны органел, таких как ядро, ретикулы, аппарат Гольджи, митохондрии, лизосомы и хлоропласты, обладают одинаковой базовой структурой, изменяется только количество жиров, белков и углеводов.

Обмен веществами

Жизнедеятельность клетки подразумевает обмен веществами с окружающей средой, вроде питания – клетка впитывает новые вещества и выпускает “отработанные”. Выделяют пассивный и активный транспорт.

Пассивный транспорт

В случае пассивного транспорта клеткой не затрачивается энергия для переноса веществ, вещества перемещаются за счёт собственной кинетической энергии.

Диффузия

Диффузия происходит за счёт перемещения веществ из областей с большей концентрацией в места с меньшей концентрацией. Например, если добавить каплю красителя в воду – капля растворится во всём объёме, это происходит за счёт тенденции снижения внутренней энергии вещества (более детально эти процессы описаны в статье термодинамика).

Осмос

Осмос клетки – это процесс диффузии воды. Клетка не может контролировать процесс осмоса и количество воды в клетке зависит от концентрации воды в среде. Если концентрация молекул воды в среде выше, то в клетке образуется избыток воды, что приводит к повышенному внутреннему давлению (гипотонии), напряжённое состояние стенок клетки называется тургор тканей (лат. turgor – вздутие). Пониженая концентрация молекул среды приводит к обратному процессу – вода выходит из клетки, клетка иссыхает.

Облегчённая диффузия

Множество веществ необходимых для существования клетки не могут попасть через плазматическую мембрану, независимо от давления, поскольку они нерастворимы в жирах (ионы K + , Na + , Ca 2+ , моносахара, аминокислоты). Для этих целей в мембране расположены белки-каналы и белки-переносчики. Белки-каналы образуют проход наподобии трубы сквозь мембрану, позволяющий проходить определённому типу веществ. Белки-переносчики открыты с внешней стороны мембраны и при попадании определённых веществ в полость этих белков меняют своё направление, перемещая вещество во внутреннюю среду клетки. Белки-переносчики очень тонко реагируют на вещества и не позволяют проходить даже близко похожим веществам.

Читайте также:
Природная зона пустыня: характеристика, какие животные живут, где есть в России

Активный транспорт

В некоторых случаях клетке необходимо избавиться от веществ, концентрация которых внутри клетке меньше, чем снаружи, тогда включается механизм активного транспорта. Для перемещения вещества из области с меньшей концентрации в область большей концентрации необходимо затратить энергию, клетки используют энергию молекул АТФ (аденозинтрифосфат). Для активного транспорта используется тип белков обладающий возможностью образования связи с молекулой АТФ и перемещаемым агентом, белки работают в режиме белков-переносчиков.

Везикулы

Помимо активного и пассивного транспорта, клеточная мембрана также обеспечивает поглощение крупных частиц, жидких и твёрдых, этот процес называется эндоцитоз. Поглощение твёрдых частиц называется фагоцитоз, жидких частиц – пиноцитоз. Клетка окружает плазматической мембраной часть среды, таким образом создавая внутри своего тела полость, которая носит название везикула. Похожим образом происходит экзоцитоз: из аппарата Гольджи выходит везикула, и при соприкосновении с плазматической мембраной, становится её частью, освобождая содержимое во внешнюю среду. В процессе экзоцитоза высвобождаются отходы жизнедеятельности клетки, либо секрецируемое клеткой вещество, например, гормоны.

Биологические мембраны, их свойства и функции

Строение биологических мембран. Одной из основных особенностей всех эукариотических клеток является изобилие и сложность строения внутренних мембран. Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндоплазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компоненты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.

Плазматическая мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов (рис. 1.6).

Молекулы фосфолипидов расположены в два ряда — гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы — поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.

Рис. 1.6. Схема строения мембраны: атрехмерная модель; б — плоскостное изображение; 1 — белки, примыкающие к липидному слою (А), погруженные в него (Б) или пронизывающие его насквозь (В); 2слои молекул липидов; 3гликопротеины; 4гликолипиды; 5гидрофильный канал, функционирующий как пора.

В состав плазматической мембраны эукариотических клеток входят также полисахариды. Их короткие, сильно разветвленные молекулы ковалентно связаны с белками, образуя гликопротеины, или с липидами (гликолипиды). Содержание полисахаридов в мембранах составляет 2-—10% по массе. Полисахаридный слой толщиной 10—20 нм, покрывающий сверху плазмалемму животных клеток, получил название гликокаликс.

Свойства и функции мембран. Все клеточные мембраны представляют собой подвижные текучие структуры, поскольку молекулы липидов и белков не связаны между собой ковалентными связями и способны достаточно быстро перемещаться в плоскости мембраны. Благодаря этому мембраны могут изменять свою конфигурацию, т. е. обладают текучестью.

Мембраны — структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях.

Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. Каждый тип клеток поэтому характеризуется индивидуальностью, которая определяется в основном гликопротеинами. Разветвленные цепи гликопротеинов, выступающие из клеточной мембраны, участвуют в распознавании факторов внешней среды, а также во взаимном узнавании родственных клеток. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам клеточной поверхности, которые подходят друг к другу как отдельные элементы цельной структуры. Такое взаимное узнавание — необходимый этап, предшествующий оплодотворению.

Читайте также:
Биология борьбы за существование и ее виды: причины и наиболее яркие примеры

Подобное явление наблюдается в процессе дифференцировки тканей. В этом случае сходные по строению клетки с помощью распознающих участков плазмалеммы правильно ориентируются относительно друг друга, обеспечивая тем самым их сцепление и образование тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунологический ответ, в котором гликопротеины играют роль антигенов. Сахара, таким образом, могут функционировать как информационные молекулы (подобно белкам и нуклеиновым кислотам). В мембранах содержатся также специфические рецепторы, переносчики электронов, преобразователи энергии, ферментные белки. Белки участвуют в обеспечении транспорта определенных молекул внутрь клетки или из нее, осуществляют структурную связь цитоскелета с клеточными мембранами или же служат в качестве рецепторов для получения и преобразования химических сигналов из окружающей среды.

Важнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.

Существует несколько механизмов транспорта веществ через мембрану.

При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемые ионные насосы. Наиболее изученным является Na – / К – -насос в клетках животных, активно выкачивающих ионы Na + наружу, поглощая при этом ионы К – . Благодаря этому в клетке поддерживается большая концентрация К – и меньшая Na + по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ.

В результате активного транспорта с помощью мембранного насоса в клетке происходит также регуляция концентрации Mg 2- и Са 2+ .

В процессе активного транспорта ионов в клетку через цитоплазматическую мембрану проникают различные сахара, нуклеотиды, аминокислоты.

Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем — посредством эндоцитоза. При эндоцитозе — внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впячивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

Процесс, обратный эндоцитозу, — экзоцитоз (экзо. — наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицеллюлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

Функции биологических мембран следующие:

  1. Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.
  2. Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.
  3. Выполняют роль рецепторов (получение и преобразование сигналов из окружающей среды, узнавание веществ клеток и т. д.).
  4. Являются катализаторами (обеспечение примембранных химических процессов).
  5. Участвуют в преобразовании энергии.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов “Пособие по биологии для поступающих в ВУЗы”

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: